DOI QR코드

DOI QR Code

Tat-Thioredoxin-like protein 1 attenuates ischemic brain injury by regulation of MAPKs and apoptosis signaling

  • Hyun Ju Cha (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Won Sik Eum (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Gi Soo Youn (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Jung Hwan Park (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hyeon Ji Yeo (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eun Ji Yeo (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hyun Jung Kwon (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Lee Re Lee (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Na Yeon Kim (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Su Yeon Kwon (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Yong-Jun Cho (Department of Neurosurgery, Hallym University Medical Center) ;
  • Sung-Woo Cho (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Oh-Shin Kwon (School of Life Sciences, College of Natural Sciences Kyungpook National University) ;
  • Eun Jeong Sohn (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Dae Won Kim (Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Duk-Soo Kim (Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University) ;
  • Yu Ran Lee (Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University) ;
  • Min Jea Shin (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Soo Young Choi (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • 투고 : 2022.11.11
  • 심사 : 2022.12.22
  • 발행 : 2023.04.30

초록

Thioredoxin-like protein 1 (TXNL1), one of the thioredoxin superfamily known as redox-regulator, plays an essential in maintaining cell survival via various antioxidant and anti-apoptotic mechanisms. It is well known that relationship between ischemia and oxidative stress, however, the role of TXNL1 protein in ischemic damage has not been fully investigated. In the present study, we aimed to determine the protective role of TXNL1 against on ischemic injury in vitro and in vivo using cell permeable Tat-TXNL1 fusion protein. Transduced Tat-TXNL1 inhibited ROS production and cell death in H2O2-exposed hippocampal neuronal (HT-22) cells and modulated MAPKs and Akt activation, and pro-apoptotic protein expression levels in the cells. In an ischemia animal model, Tat-TXNL1 markedly decreased hippocampal neuronal cell death and the activation of astrocytes and microglia. These findings indicate that cell permeable Tat-TXNL1 protects against oxidative stress in vitro and in vivo ischemic animal model. Therefore, we suggest Tat-TXNL1 can be a potential therapeutic protein for ischemic injury.

키워드

과제정보

This research was supported by Basic Science Research Program (2018R1D1A3B07049265 & 2019R1A6A1A11036849) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

참고문헌

  1. Lee KK, Murakawa M, Takahashi S et al (1998) Purification, molecular cloning, and characterization of TRP32, a novel thioredoxin-related mammalian protein of 32 kDa. J Biol Chem 273, 19160-19166 https://doi.org/10.1074/jbc.273.30.19160
  2. Miranda-Vizuete A, Gustafsson JA and Spyrou G (1998) Molecular cloning and expression of a cDNA encoding a human thioredoxin-like protein. Biochem Biophys Res Commun 243, 284-288 https://doi.org/10.1006/bbrc.1997.8003
  3. Goroncy AK, Koshiba S, Tochio N et al (2010) Solution structure of the C-terminal DUF1000 domain of the human thioredoxin-like 1 protein. Proteins 78, 2176-2180 https://doi.org/10.1002/prot.22719
  4. Jin J, Chen X, Zhou Y et al (2002) Crystal structure of the catalytic domain of a human thioredoxin-like protein. Eur J Biochem 269, 2060-2068 https://doi.org/10.1046/j.1432-1033.2002.02844.x
  5. Jimenez A, Pelto-Huikko M, Gustafsson JA and Miranda-Vizuete A (2006) Characterization of human thioredoxinlike-1: potential involvement in the cellular response against glucose deprivation. FEBS Lett 580, 960-967 https://doi.org/10.1016/j.febslet.2006.01.025
  6. Kim KY, Lee JW, Park MS, Jung MH, Jeon GA and Nam MJ (2006) Expression of a thioredoxin-related protein-1 is induced by prostaglandin E(2). Int J Cancer 118, 1670-1679 https://doi.org/10.1002/ijc.21572
  7. Ishii T, Funato Y and Miki H (2013) Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL). J Biol Chem 288, 7263-7270 https://doi.org/10.1074/jbc.M112.418004
  8. Xu W, Wang S, Chen Q et al (2014) TXNL1-XRCC1 pathway regulates cisplatin-induced cell death and contributes to resistance in human gastric cancer. Cell Death Dis 5, e1055
  9. Brown JD, Day AM, Taylor SR, Tomalin LE, Morgan BA and Veal EA (2013) A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep 5, 1425-1435 https://doi.org/10.1016/j.celrep.2013.10.036
  10. Li PA, He QP, Nakamura L and Csiszar K (2001) Free radical spin trap alpha-phenyl-N-tert-butyl-nitron inhibits caspase-3 activation and reduces brain damage following a severe forebrain ischemic injury. Free Radic Biol Med 31, 1191-1197 https://doi.org/10.1016/S0891-5849(01)00700-6
  11. Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4, 2587-2597 https://doi.org/10.1096/fasebj.4.9.2189775
  12. Ginsberg MD, Becker DA, Busto R et al (2003) Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia. Ann Neurol 54, 330-342 https://doi.org/10.1002/ana.10659
  13. Sugawara T and Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5, 597-607 https://doi.org/10.1089/152308603770310266
  14. El-Andaloussi S, Holm T and Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11, 3597-3611 https://doi.org/10.2174/138161205774580796
  15. Kim MJ, Park M, Kim DW et al (2015) Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model. Biomaterials 64, 45-56 https://doi.org/10.1016/j.biomaterials.2015.06.015
  16. Kubo E, Fatma N, Akagi Y, Beier DR, Singh SP and Singh DP (2008) TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol 294, C842-C855 https://doi.org/10.1152/ajpcell.00540.2007
  17. Moon JI, Han MJ, Yu SH et al (2019) Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells. BMB Rep 52, 324-329 https://doi.org/10.5483/BMBRep.2019.52.5.195
  18. Sakurazawa M, Katsura KI, Saito M, Asoh S, Ohta S and Katayama Y (2012) Mild hypothermia enhanced the protective effect of protein therapy with transductive anti-death FNK protein using a rat focal transient cerebral ischemia model. Brain Res 1430, 86-92 https://doi.org/10.1016/j.brainres.2011.10.041
  19. Shin MJ, Kim DW, Lee YP et al (2014) Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury. Free Radic Biol Med 67, 195-210 https://doi.org/10.1016/j.freeradbiomed.2013.10.815
  20. van den Berg A and Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22, 888-893 https://doi.org/10.1016/j.copbio.2011.03.008
  21. Wadia JS and Dowdy SF (2002) Protein transduction technology. Curr Opin Biotechnol 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  22. Yeo HJ, Shin MJ, Yeo EJ et al (2019) Tat-CIAPIN1 inhibits hippocampal neuronal cell damage through the MAPK and apoptotic signaling pathways. Free Radic Biol Med 135, 68-78 https://doi.org/10.1016/j.freeradbiomed.2019.02.028
  23. Yeo HJ, Shin MJ, Kim DW, Kwon HY, Eum WS and Choi SY (2021) Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F β-cells. BMB Rep 54, 458-446
  24. Zhang X, Li Y, Cheng Y et al (2015) Tat PTD-endostatin: A novel anti-angiogenesis protein with ocular barrier permeability via eye-drops. Biochim Biophys Acta 1850, 1140-1149 https://doi.org/10.1016/j.bbagen.2015.01.019
  25. Ahn KH, Kim YS, Kim SY, Huh Y, Park C and Jeong JW (2009) Okadaic acid protects human neuroblastoma SHSY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis. Neurosci Lett 449, 93-97 https://doi.org/10.1016/j.neulet.2008.10.103
  26. Kim EK and Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802, 396-405 https://doi.org/10.1016/j.bbadis.2009.12.009
  27. Uranga RM, Katz S and Salvador GA (2013) Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 288, 19773-19784 https://doi.org/10.1074/jbc.M113.457622
  28. Yu H, Shi L, Qi G, Zhao S, Gao Y and Li Y (2016) Gypenoside protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of mitogen-activated protein kinase mediated nuclear factor kappa B pathway in vitro and in vivo. Front Pharmacol 7, 148
  29. Glickman MH and Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82, 373-428 https://doi.org/10.1152/physrev.00027.2001
  30. Sarin R and Sharma YD (2006) Thioredoxin system in obligate anaerobe Desulfovibrio desulfuricans: identification and characterization of a novel thioredoxin 2. Gene 376, 107-115 https://doi.org/10.1016/j.gene.2006.02.012
  31. Zhang H, Cheng D, Liu H and Zheng H (2018) Differential responses of a thioredoxin-like protein gene to Vibrio parahaemolyticus challenge in the noble scallop Chlamys nobilis with different total carotenoids content. Fish Shellfish Immunol 72, 377-382 https://doi.org/10.1016/j.fsi.2017.11.020
  32. Andersen KM, Madsen L, Prag SO et al (2009) Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome. J Biol Chem 284, 15246-15254 https://doi.org/10.1074/jbc.M900016200
  33. Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG and Madura K (2005) Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25, 403-413 https://doi.org/10.1128/MCB.25.1.403-413.2005
  34. Gonen H, Smith CE, Siegel NR et al (1994) Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci USA 91, 7648-7652 https://doi.org/10.1073/pnas.91.16.7648
  35. Liyanage DS, Omeka WKM, Godahewa GI and Lee J (2018) Molecular characterization of thioredoxin-like protein 1 (TXNL1) from big-belly seahorse hippocampus abdominalis in response to immune stimulation. Fish Shellfish Immunol 75, 181-189 https://doi.org/10.1016/j.fsi.2018.02.009
  36. Circu ML and Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48, 749-762 https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  37. Jia L, Chen Y, Tian YH and Zhang G (2018) MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo. Exp Ther Med 15, 1640-1646
  38. Kwon SH, Hong SI, Kim JA et al (2011) The neuroprotective effects of Lonicera japonica THUNB. against hydrogen peroxide-induced apoptosis via phosphorylation of MAPKs and PI3K/Akt in SH-SY5Y cells. Food Chem Toxicol 49, 1011-1019 https://doi.org/10.1016/j.fct.2011.01.008
  39. Ang YLE, Yong WP and Tan P (2016) Translating gastric cancer genomics into targeted therapies. Crit Rev Oncol Hematol 100, 141-146 https://doi.org/10.1016/j.critrevonc.2016.02.007
  40. Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17, 2596-2606 https://doi.org/10.1093/emboj/17.9.2596
  41. Zhou F, Gomi M, Fujimoto M et al (2009) Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia. Brain Res 1272, 62-70 https://doi.org/10.1016/j.brainres.2009.03.023
  42. Atalay S, Soylu B, Aykac A et al (2018) Protective effects of St. John's wort in the hepatic ischemia/reperfusion injury in rats. Turk J Surg 34, 198-204 https://doi.org/10.5152/turkjsurg.2018.3952
  43. Ge Y, Zhang Q, Li H, Bai G, Jiao Z and Wang H (2018) Adipose-derived stem cells alleviate liver apoptosis induced by ischemia-reperfusion and laparoscopic hepatectomy in swine. Sci Rep 8, 16878
  44. Youle RJ and Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9, 47-59 https://doi.org/10.1038/nrm2308
  45. Hassanzadeh S, Jameie SB, Soleimani M, Farhadi M, Kerdari M and Danaei N (2018) Coenzyme Q10 influences on the levels of TNF-α and IL-10 and the ratio of Bax/Bcl2 in a menopausal rat model following lumbar spinal cord injury. J Mol Neurosci 65, 255-264 https://doi.org/10.1007/s12031-018-1090-6
  46. Yoo MH, Carlson BA, Gladyshev VN and Hatfield DL (2013) Abrogated thioredoxin system causes increased sensitivity to TNF-α-induced apoptosis via enrichment of p-ERK 1/2 in the nucleus. PLoS One 8, e71427
  47. Brentnall M, Rodriguez-Menocal L, de Guevara RL, Cepero E and Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14, 32
  48. Jahan N, Chowdhury A, Li T, Xu K, Wei F and Wang S (2021) Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway. Redox Rep 26, 1-9 https://doi.org/10.1080/13510002.2021.1871814
  49. Pallepati P and Averill-Bates D (2010) Mild thermotolerance induced at 40 degrees C increases antioxidants and protects HeLa cells against mitochondrial apoptosis induced by hydrogen peroxide: role of p53. Arch Biochem Biophys 495, 97-111 https://doi.org/10.1016/j.abb.2009.12.014
  50. Redza-Dutordoir M and Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863, 2977-2992 https://doi.org/10.1016/j.bbamcr.2016.09.012
  51. Fulda S, Gorman AM, Hori O and Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010, 214074
  52. Yamakawa H, Ito Y, Naganawa T et al (2000) Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurol Res 22, 556-564 https://doi.org/10.1080/01616412.2000.11740718
  53. Tan J, Chen SX, Lei QY et al (2021) Mitochonic acid 5 regulates mitofusin 2 to protect microglia. Neural Regen Res 16, 1813-1820 https://doi.org/10.4103/1673-5374.306094
  54. Wang M, Hayashi H, Horinokita I et al (2021) Neuroprotective effects of Senkyunolide I against glutamate-induced cells death by attenuating JNK/caspase-3 activation and apoptosis. Biomed Pharmacother 140, 111696
  55. Kang JB, Park DJ, Shah MA and Koh PO (2021) Retinoic acid exerts neuroprotective effects against focal cerebral ischemia by preventing apoptotic cell death. Neurosci Lett 757, 135979
  56. Leak RK, Li P, Zhang F et al (2015) Apurinic/apyrimidinic endonuclease 1 upregulation reduces oxidative DNA damage and protects hippocampal neurons from ischemic injury. Antioxid Redox Signal 22, 135-148 https://doi.org/10.1089/ars.2013.5511
  57. Endoh M, Maiese K and Wagner J (1994) Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res 651, 92-100 https://doi.org/10.1016/0006-8993(94)90683-1
  58. Hur J, Lee P, Kim MJ, Kim Y and Cho YW (2010) Ischemia-activated microglia induces neuronal injury via activation of gp91phox NADPH oxidase. Biochem Biophys Res Commun 391, 1526-1530 https://doi.org/10.1016/j.bbrc.2009.12.114
  59. Chu K, Yin B, Wang J et al (2012) Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation 9, 69
  60. Ha SK, Moon E, Ju MS et al (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63, 211-223 https://doi.org/10.1016/j.neuropharm.2012.03.016
  61. Park JH, Park CW, Ahn JH et al (2017) Neuroprotection and reduced gliosis by pre- and post-treatments of hydroquinone in a gerbil model of transient cerebral ischemia. Chem Biol Interact 278, 230-238 https://doi.org/10.1016/j.cbi.2017.01.018