DOI QR코드

DOI QR Code

연속 추력제어 연소시험을 위한 단계별 시험들

Step-by-step Tests for Continuous Thrust Control Hot-firing Test

  • Cheolwoong Kang (School of Mechanical Engineering, Chungbuk National University) ;
  • Shinwoo Lee (School of Mechanical Engineering, Chungbuk National University) ;
  • Sunwoo Han (School of Mechanical Engineering, Chungbuk National University) ;
  • Kangyeong Lee (School of Mechanical Engineering, Chungbuk National University) ;
  • Hadong Jung (School of Mechanical Engineering, Chungbuk National University) ;
  • Dongwoo Choi (School of Mechanical Engineering, Chungbuk National University) ;
  • Kyubok Ahn (School of Mechanical Engineering, Chungbuk National University)
  • 투고 : 2022.11.09
  • 심사 : 2022.12.15
  • 발행 : 2023.02.28

초록

본 논문에서는 메탄엔진 단일분사기급 연소기의 추력제어를 위해 수행된 드라이런 테스트, 수류시험, 그리고 연소시험 결과를 다루었다. 메탄엔진 연소시험설비의 산화제 및 연료 공급 라인에 유량제어 밸브를 설치한 후, 다수의 드라이런 테스트를 수행하여 밸브가 설정된 스트로크에 빠르고 안정적으로 도달할 수 있도록 하였다. 다음 액체질소와 기체질소를 사용한 수류시험을 진행하여 밸브 제어에 따른 모사 추진제의 안정적인 공급을 확인하였다. 최종적으로 액체산소와 기체메탄을 사용하여 정격 추력 대비 50%~10%의 고정 추력제어 연소시험과 연속 추력제어 연소시험을 성공적으로 수행하였다.

Results of dry-run tests, cold-flow tests, and hot-firing tests performed to throttle a methane engine uni-element thrust chamber are covered in the paper. After installing flow control valves on the oxidizer and fuel supply lines of the methane engine combustion test facility, a number of dry-run tests were repeated so that the valves could reach set strokes quickly and stably. Then, cold-flow tests using liquid nitrogen and gaseous nitrogen were conducted to confirm the stable supply of the simulated propellants according to the valve control. Finally, using liquid oxygen and gaseous methane, hot-firing tests for fixed and continuous thrust control of 50% to 10% of the nominal thrust were successfully performed.

키워드

과제정보

본 논문은 과학기술정보통신부의 재원으로 한국연구재단(RS-2022-00156358) 및 한국항공우주연구원(KARI-FR21C00)의 지원을 받아서 수행되었으며, 이에 감사드립니다. 또한 연속 추력제어 연소시험을 가능하게 도움을 주신 한국항공우주연구원 임병직 책임연구원님, 비츠로넥스텍 채명일 부장님, 한양이엔지 지상연 부장님, 이종덕 차장님께 깊은 감사를 드립니다.

참고문헌

  1. Dressler, G., "Summary of Deep Throttling Rocket Engines with Emphasis on Apollo LMDE," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, C.A., U.S.A., AIAA 2006-5220, Jul. 2006. 
  2. Betts, E. and Frederick, R., "A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities," 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, T.N., U.S.A., AIAA 2010-6541, Jul. 2010. 
  3. Casiano, M.J., Hulka, J.R. and Yang, V., "Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review," Journal of Propulsion and Power, Vol. 26, No. 5, pp. 897-923, 2010.  https://doi.org/10.2514/1.49791
  4. Huzel, D.K. and Huang, D.H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, Progress in Astronautics and Aeronautics, Washington, D.C., U.S.A., pp. 1-134, 1992. 
  5. Lee, J.Y. and Jung, T.K., "The Developing Trend of Valves for Liquid Rocket Engine," Current Industrial and Technological Trends in Aerospace, Vol. 7, No. 2, pp. 68-75, 2009. 
  6. Bahadori, A., Natural Gas Processing: Technology and Engineering Design, Gulf Professional Publishing, Houston, TX, U.S.A., pp. 371-439, 2014. 
  7. Kang, D., Ahn, K., Lim, B., Han, S., Choi, H.S., Seo, S. and Kim, H., "Flow Control Characteristics of Cavitating Venturi in a Liquid Rocket Engine Test Facility," Journal of the Korean Society of Propulsion Engineers, Vol. 18, No. 3, pp. 84-91, 2014.  https://doi.org/10.6108/KSPE.2014.18.3.084
  8. Yoon, W., Yoon, H., Ahn, J. and Ahn, K., "Flow Measurement and Instrumentation Flow Control Characteristics of Throttling Venturi Valve with Adjustable Area," Flow Measurement and Instrumentation, Vol. 81, 102034, 2021. 
  9. Baumann, H.D., Control Valve Primer: A User's Guide, 4th ed., International Society of Automation, North Carolina, U.S.A., 2009. 
  10. "Cv Calculator for Valve Sizing," retrieved 23 Sep. 2022 from https://www.geminivalve.com/valve-sizing-cv-flow-calculator/. 
  11. Kang, C., Hwang, D., Ahn, J., Lee, J., Lee, D. and Ahn, K., "Methane Engine Combustion Test Facility Construction and Preliminary Tests," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 3, pp. 89-100, 2021.  https://doi.org/10.6108/KSPE.2021.25.3.089
  12. "Rocket Propulsion Analysis," retrieved 4 Oct. 2022 from https://www.rocket-propulsion.com/publications.htm. 
  13. Ponomarenko, A., "RPA: Tool for Rocket Propulsion Analysis," Space Propulsion Conference, Cologne, Germany, May 2014. 
  14. Wang, Q., Wu, F., Zeng, M., Luo, L. and Sun, J., "Numerical Simulation and Optimization on Heat Transfer and Fluid Flow in Cooling Channel of Liquid Rocket Engine Thrust Chamber," Engineering Computations, Vol. 23, No. 8, pp. 907-921, 2006.  https://doi.org/10.1108/02644400610707793
  15. Kang, Y.D. and Sun, B., "Numerical Simulation of Liquid Rocket Engine Thrust Chamber Regenerative Cooling," Journal of Thermophysics and Heat Transfer, Vol. 25, No. 1, pp. 155-164, 2011.  https://doi.org/10.2514/1.47701
  16. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 9th ed, John Wiley & Sons Inc., New York, N.Y., U.S.A., Ch. 8, 2016. 
  17. Leccese, G., Bianchi, D., Betti, B., Lentini, D. and Nasuti, F., "Convective and Radiative Wall Heat Transfer in Liquid Rocket Thrust Chambers," Journal of Propulsion and Power, Vol. 34, No. 2, pp. 318-326, 2018. https://doi.org/10.2514/1.B36589