Acknowledgement
이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No.2020R1G1A1014172).
References
- Besikci, E.B., Arslan, O., Turan, O. and Olcer, A.I., 2016. An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, pp.393-401. https://doi.org/10.1016/j.cor.2015.04.004
- Choi, M.J., De Silva, L.W. A. and Yamaguchi, H., 2019. Artificial neural network for the short-term prediction of Arctic sea ice concentration. Remote Sensing, 11(9), pp.1071.
- Feng, D., Ye, B., Zhang, Z. and Wang, X., 2020. Numerical simulation of the ship resistance of KCS in different water depths for model-scale and Full-scale. Journal of marine science and engineering, 8, pp.745
- Grabowska, K. and Szczuko, P., 2015,. Ship resistance prediction with artificial neural networks. In 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 28 December 2015.
- Janssen, C.F., Koliha, N. and Rung, T., 2015. A fast and rigorously parallel surface voxelization technique for GPUaccelerated CFD simulations. Communications in Computational Physics, 17(5), pp.1246-1270. https://doi.org/10.4208/cicp.2014.m414
- Kim, Y.C., Kim, K.S., Hwang, S.H., and Yeon, S. M., 2022a. Prediction of Residual Resistance Coefficient of Ships using Convolutional Neural Network. Journal of the Society of Naval Architects of Korea, 59(4), pp.243-250. https://doi.org/10.3744/SNAK.2022.59.4.243
- Kim, H.C. and Park, H.G., 2015. Practical application of neural networks for prediction of ship's performance factors. Journal of Ocean Engineering and Technology, 29(2), pp.111-119. https://doi.org/10.5574/KSOE.2015.29.2.111
- Kim, J.H., Roh, M.I., Kim, K.S., Yeo, I.C., Oh, M.J., Nam, J.W., Lee, S.H. and Jang, Y.H., 2022b. Prediction of the superiority of the hydrodynamic performance of hull forms using deep learning. International Journal of Naval Architecture and Ocean Engineering, 100490.
- Krizhevsky, A., Sutskever, I. and Hinton, G. E., 2017. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), pp.84-90. https://doi.org/10.1145/3065386
- LeCun, Y., Bengio, Y, and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.436-444. https://doi.org/10.1038/nature14539
- Panda, J.P., 2021. Machine Learning for Naval Architecture. Ocean and Marine Engineering. arXiv preprint arXiv:2109.05574.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S., 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32.
- Wason, R., 2018. Deep learning: Evolution and expansion. Cognitive Systems Research, 52, pp.701-708. https://doi.org/10.1016/j.cogsys.2018.08.023
- Zhao, H., Zhang, W., Sun, H. and Xue, B., 2019. Embedded deep learning for ship detection and recognition. Future Internet, 11(2), pp.53.
- Zhou, Y., Lu, H., Wang, G., Wang, J. and Li, W., 2020. Voxelization modelling based finite element simulation and process parameter optimization for Fused Filament Fabrication. Materials & Design, 187, 108409.