DOI QR코드

DOI QR Code

Compensation method of average current sampling error under the operating condition of low sampling-to-fundamental frequency ratio

  • Su‑In Jo (Department of Electrical Engineering, Chungnam National University) ;
  • Wook‑Jin Lee (Department of Electrical Engineering, Chungnam National University)
  • Received : 2022.10.03
  • Accepted : 2023.01.17
  • Published : 2023.04.20

Abstract

This paper describes the compensation method for average current sampling error under the operating condition of low sampling-to-fundamental frequency ratio. When the sampling-to-fundamental frequency ratio is lowered, the current ripple is very large, and an error between the sampled current and the average current during one sampling period occurs. The actual average current can be obtained from the relationship between the average voltage and current of the synchronous reference frame. The actual average voltage and reference voltage match when the inverter output voltage has no error. Thus, the proposed compensation method of average current sampling error can be implemented based on the reference voltage and sampled current. The proposed current compensation method is verified by simulations and experiments.

Keywords

References

  1. Hong, D., Woo, B., Lee, J., Koo, D.: Ultra high speed motor supported by air foil bearings for air blower cooling fuel cells. IEEE Trans. Magn. 48(5), 871-874 (2012) https://doi.org/10.1109/TMAG.2011.2174209
  2. Lusignani, D., Barater, D., Franceschini, G., Buticchi, G., Galea, M., Gerada, C.: A high-speed electric drive for the more electric engine. IEEE Energy Conversion Congress Exposit ECCE. 11, 4004-4011 (2015)
  3. Zhao, L., et al.: A highly efficient 200 000 rpm permanent magnet motor system. IEEE Trans. Magn. 43(6), 2528-2530 (2007) https://doi.org/10.1109/TMAG.2007.893523
  4. Monopoli, V.G., Sidella, P., Cupertino, F.: A Si-IGBT-based solution to drive high-speed electrical machines. IEEE Trans. Ind. Appl. 55(5), 4900-4909 (2019) https://doi.org/10.1109/TIA.2019.2919821
  5. Zwyssig, S.D., Kolar, R.J.W.: An Ultra high-Speed low power electrical drive system. IEEE Transact Indust Electron. 55(2), 577-585 (2008) https://doi.org/10.1109/TIE.2007.911950
  6. Kim, H., Degner, M.W., Guerrero, J.M., Briz, F., Lorenz, R.D.: Discrete-time current regulator design for ac machine drives. IEEE Trans. Ind. Appl. 46(4), 1425-1435 (2010) https://doi.org/10.1109/TIA.2010.2049628
  7. McGrath, B.P., Parker, S.G., Holmes, D.G.: High-performance current regulation for low-pulse-ratio inverters. IEEE Trans. Ind. Appl. 49(1), 149-158 (2013) https://doi.org/10.1109/TIA.2012.2229252
  8. Bae, B.-H., Sul, S.-K.: A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives. IEEE Trans. Ind. Appl. 39(3), 802-810 (2003) https://doi.org/10.1109/TIA.2003.810660
  9. Ji-Hoon Jang, S.-K., Sul, J.-I.H., Ide, K., Sawamura, M.: Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency. IEEE Transact Ind Appl. 39(4), 1031-1039 (2003) https://doi.org/10.1109/TIA.2003.813734
  10. Morimoto, S., Kawamoto, K., Sanada, M., Takeda, Y.: Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame. IEEE Trans. Ind. Appl. 38(4), 1054-1061 (2002) https://doi.org/10.1109/TIA.2002.800777
  11. Bae, B.-H., Sul, S.-K., Kwon, J.-H., Byeon, J.-S.: Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor. IEEE Trans. Ind. Appl. 39(3), 811-818 (2003) https://doi.org/10.1109/TIA.2003.810658
  12. Awan, H.A.A., Tuovinen, T., Saarakkala, S.E., Hinkkanen, M.: Discrete-time observer design for sensorless synchronous motor drives. IEEE Trans. Ind. Appl. 52(5), 3968-3979 (2016) https://doi.org/10.1109/TIA.2016.2572105
  13. Yao, Y., Huang, Y., Peng, F., Dong, J., Zhu, Z.: Compensation method of position estimation error for high-speed surface-mounted pmsm drives based on robust inductance estimation. IEEE Trans. Power Electron. 37(2), 2033-2044 (2022)
  14. Wang, Y., Tobayashi, S., Lorenz, R.D.: A low-switching-frequency flux observer and torque model of deadbeat-direct torque and flux control on induction machine drives. IEEE Trans. Ind. Appl. 51(3), 2255-2267 (2015) https://doi.org/10.1109/TIA.2014.2365628
  15. Kim, J., Jeong, I., Nam, K., Yang, J., Hwang, T.: Sensorless control of pmsm in a high-speed region considering iron loss. IEEE Trans. Industr. Electron. 62(10), 6151-6159 (2015) https://doi.org/10.1109/TIE.2015.2432104
  16. Y. Lee and J. Ha, (2016) Nonlinearity analysis and linear modulation method for two level voltage source inverter with low switching to operating frequency ratio, IEEE Applied Power Electronics Conference and Exposition (APEC), 193-198
  17. Yim, J., Sul, S., Bae, B., Patel, N.R., Hiti, S.: Modified current control schemes for high-performance permanent-magnet ac drives with low sampling to operating frequency ratio. IEEE Trans. Ind. Appl. 45(2), 763-771 (2009) https://doi.org/10.1109/TIA.2009.2013600
  18. N. Hofmann, F. W. Fuchs and J. Dannehl, (2011) Models and effects of different updating and sampling concepts to the control of grid-connected PWM converters - A study based on discrete time domain analysis, Proceedings of the 2011 14th European Conference on Power Electronics and Applications 1-10