DOI QR코드

DOI QR Code

데이터베이스를 사용한 Star 그레인 설계 방법

Design Method of Star Grain using Database

  • Seok-Hwan Oh (Department of Aerospace Engineering, Inha University) ;
  • Tae-Seong Roh (Department of Aerospace Engineering, Inha University) ;
  • Hyoung Jin Lee (Department of Aerospace Engineering, Inha University)
  • 투고 : 2022.11.01
  • 심사 : 2022.12.13
  • 발행 : 2023.02.28

초록

Star 형상을 갖는 추진제 그레인은 다양한 면적 선도가 가능하고, 제작이 용이하여 실제 고체 추진제 로켓에 유용하게 적용될 수 있다. 그러나, 설계와 관련한 형상 변수가 많고 연소 말기 슬리버가 존재하므로, 해석 비용이 저렴한 일반적인 단일 최적화 기법으로는 최적 설계가 성공하기 어렵다. 본 연구에서는 활용성과 설계 성공률을 높이기 위해 데이터베이스를 사용하여 star 그레인을 설계하는 기법을 제안하였다. 제안된 방법에서는 성능 변수를 정의하고, 데이터베이스를 구축한 후 요구조건을 만족하는 해를 탐색한다. 제안된 방법을 적용하여 다양한 종류의 연소 면적 선도를 갖는 star 그레인의 설계를 수행하고, 설계 방법의 타당성을 검증하였다.

The star-shaped propellant grain can be used for designing burning surface areas with various profiles and are easy to manufacture, so it can be usefully applied to actual solid rocket motors. However, since there are many design-related configuration variables and slivers at the end of combustion, it is difficult to achieve an optimal design using a general optimization technique. In this study, the new method for designing star grains using a database was proposed to increase usability and success rate of optimization design. In the proposed method, a solution that satisfies the requirements is obtained after defining the performance variables, constructing the database. By applying the proposed method, the design of star grains with various profiles of the burning surface area was performed, and the validity of the design method was confirmed.

키워드

참고문헌

  1. Mesgari, S., Bazazzadeh, M. and Mostofizadeh, A., "Finocyl grain design using the genetic algorithm in combination with adaptive basis function construction," International Journal of Aerospace Engineering, Vol. 2019, No. 1, pp. 1-12, 2019.
  2. Jack, D., Robert, G., Thomas, B. and Otis, R., "Preliminary design and test of high altitude two-stage rockets in NewZealand," Aerospace Science and Technology, Vol. 128, No. 1, pp. 1-16, 2022. https://doi.org/10.1016/j.ast.2022.107741
  3. Kamran, A., Guozhu, L., Rafique, A.F. and Zeeshan, Q., "±3-Sigma based design optimization of 3D Finocyl grain," Aerospace Science and Technology, Vol. 26, No. 1, pp. 29-37, 2013. https://doi.org/10.1016/j.ast.2012.02.011
  4. Tangermann, E., Wegh, N., Klein, M., Weiland, S. and Weiland. S., "Simulation of Ariane 5 Solid Rocket Booster Deformation by Internal Ballistics," Journal of Propulsion and Power, Vol. 37, No. 5, pp. 1-12, 2020. https://doi.org/10.2514/1.B37860
  5. Park, C.W., Roh, T.S., Lee, H.J. and Jung, E.H., "Analysis of Burn-back Tendency on the Finocyl Grain," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 2, pp. 55-65, 2021. https://doi.org/10.6108/KSPE.2021.25.2.055
  6. Yoo, J.S., Kan, D., Roh, T.S. and Lee, H.J., "A Study on the Optimum Design of Finocyl Grain Using Genetic Algorithm," Journal of the Korean Society of Propulsion Engineers, Vol. 26, No. 3, pp. 22-31, 2022. https://doi.org/10.6108/KSPE.2022.26.3.022
  7. Acik, S., "Internal Ballistic Design Optimization of a Solid Rocket Motor," Master Dissertation, Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey, 2010.
  8. Kamran, A., Guozhu, L., Rafique, A.F., Naz, S. and Zeeshan, Q., "Star grain optimization using genetic algorithm," The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA, Orlando, U.S.A., AIAA 2010-3084, April 2010.
  9. Rafique, A.F., Zeeshan, Q., Kamran, A. and Guozhu, L., "A new paradigm for star grain design and Optimization," Aircraft Engineering and Aerospace Technology, Vol. 87, No. 5, pp. 476-482, 2015. https://doi.org/10.1108/AEAT-07-2013-0141
  10. Ciucci, A. and Jenkins, R.M., "Analysis of Ignition and Flame Spreading in Solid Rocket Motor Star Slots," Journal of Propulsion and Power, Vol. 11, No. 6, pp. 1371-1373, 1996 https://doi.org/10.2514/3.51447
  11. Greatrix, D.R., "Internal Ballistic Model for Spinning Star-Grain Motors," Journal of Propulsion and Power, Vol. 12, No. 3, pp. 612-614, 1996. https://doi.org/10.2514/3.24077
  12. Oh, S.H., Kim, Y.C., Cha, S.W. and Roh, T.S., "Study of Hybrid Optimization Technique for Grain Optimum Design," International Journal of Aeronautical and Space Sciences, Vol. 18, No, 4, pp. 780-787, 2017. https://doi.org/10.5139/IJASS.2017.18.4.780
  13. Segovia-Hernandez, J.G., Hernandez, S. and Bonilla-Petriciolet, A., "Reactive distillation: A review of optimal design using deterministic and stochastic techniques," Chemical Engineering and Processing, Vol. 97, pp. 134-143, 2015. https://doi.org/10.1016/j.cep.2015.09.004
  14. Shim, P.Y. and Manoochehri, S., "A hybrid deterministic/stochastic optimization approach for the shape configuration design of structures," Structural and Multidisciplinary Optimization, Vol. 17, No. 2, pp. 113-129, 2015. https://doi.org/10.1007/BF01195936
  15. Nisar, K. and Guozhu, L., "A new approach for design and optimization of SRM wagon wheel grain," Asian Joint Conference on Propulsion and Power, Korean Society of Propulsion Engineers, Gyeongju, Korea, pp. 247-254, March 2008.
  16. Raza, M.A. and Liang, W., "Design and Optimization of 3D Wagon Wheel Grain for Dual Thrust Solid Rocket Motors," Propellants, Explosives, Pyrotechnics, Vol. 38, No. 1, pp. 67-74, 2013. https://doi.org/10.1002/prep.201100104
  17. Mahjub, A., Mazlan, N.M., Abdullah, M.Z. and Azam, Q., "Design Optimization of Solid Rocket Propulsion: A Survey of Recent Advancements," Journal of Spacecraft and Rockets, Vol. 57, No. 1, pp. 3-11, 2020. https://doi.org/10.2514/1.A34594
  18. Kamran, A. and Liang, G., "An Integrated Approach for Optimization of Solid Rocket Motor," Aerospace Science and Technology, Vol. 17, No. 1, pp. 50-64, 2012. https://doi.org/10.1016/j.ast.2011.03.006
  19. Hartfield, R., Jenkins, R., Burkhalter, J. and Foster, W., "A Review of Analytical Methods for Solid Rocket Motor Grain ms," Journal of Mechanical Science and Technology, Vol. 26, No. 5, pp. 1623-1632, 2012.