References
- AISC (2022), AISC Shapes Database v15.0H, American Institute of Steel Construction Database, Chicago, IL, USA. https://www.aisc.org/search/?query=shapesdatabase&pageSize=10&page=1.
- Allen, G.I. (2020), "Handbook of graphical models", J. Am. Stat. Assoc., 115(531), 1555-1557. https://doi.org/10.1080/01621459.2020.1801279.
- Bareinboim, E., Tian, J. and Pearl, J. (2014), "Recovering from selection bias in causal and statistical inference", Proceedings of the National Conference on Artificial Intelligence, Quebec City, Quebec, Canada, July.
- Quantumblacklabs/Causalnex (2021), Causalnex: A Python Library That Helps Data Scientists to Infer Causation Rather Than Observing Correlation, https://github.com/quantumblacklabs/causalnex.
- Beyzatlar, M.A., Karacal, M. and Yetkiner, H. (2014), "Granger-causality between transportation and GDP: A panel data approach", Transp. Res. A: Policy Pract., 63, 43-55. https://doi.org/10.1016/j.tra.2014.03.001.
- Blyth, C.R. (1972), "On Simpson's paradox and the sure-thing principle", J. Am. Stat. Assoc., 67(338), 364-366. https://doi.org/10.1080/01621459.1972.10482387
- Bnlearn (2020), Bnlearn - Bayesian Network Structure Learning. https://www.bnlearn.com/
- Bollen, K.A. and Pearl, J. (2013), "Eight myths about causality and structural equation models", Handbook of Causal Analysis for Social Research, Springer, Dordrecht, The Netherlands.
- Bunge, M. (1979), Causality and Modern Science, Courier Corporation, North Chelmsford, Massachusetts,
- CausalGAM (2020), CRAN - Package CausalGAM, https://cran.rproject.org/web/packages/CausalGAM/index.html.
- Center for Causal Discovery (2022), Data Science Research - Center for Causal Discovery, https://www.ccd.pitt.edu/people/data-science-research.
- Chambliss, D.F. and Schutt, R.K. (2013), "Causation and experimental design", Making Sense of the Social World: Methods of Investigation, SAGE Publications, New York, NY, USA.
- Correa, J.D. and Bareinboim, E. (2017), "Causal effect identification by adjustment under confounding and selection biases", 31st AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, CA, USA, February.
- Dablander, F. (2020), "An introduction to causal inference", PsyArXiv, 2020, 1-15. https://doi.org/10.31234/osf.io/b3fkw.
- Dimensions (2021), Dimensions.ai., https://www.dimensions.ai/.
- Dosilovic, F.K., Brcic, M. and Hlupic, N. (2018), "Explainable artificial intelligence: A survey", 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings, Opatija, Croatia, May.
- Dzeroski, S. (2009), "Relational data mining", Data Mining and Knowledge Discovery Handbook, Springer, Boston, MA,
- EconML. (2022), EconML - Microsoft Research, https://www.microsoft.com/enus/research/project/econml/2022).
- Erdal, H., Erdal, M., Simsek, O. and Erdal, H.I. (2018), "Prediction of concrete compressive strength using nondestructive test results", Comput, Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407.
- Forney, A. and Mueller, S. (2022), "Causal inference in AI education: A primer", J. Causal Inference, 10(1), 141-173. https://doi.org/10.1515/jci-2021-0048.
- Gibb, A., Lingard, H., Behm, M. and Cooke, T. (2014), "Construction accident causality: Learning from different countries and differing consequences", Constr. Manag. Econ., 32(5), 446-459. https://doi.org/10.1080/01446193.2014.907498.
- Glymour, C., Schemes, R., Spirtes, P. and Meek, C. (1994), "Regression and causation", Report CMU-PHIL-60; Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA,
- Glymour, C., Zhang, K. and Spirtes, P. (2019), "Review of causal discovery methods based on graphical models", Front. Gene., 10, 524. https://doi.org/10.3389/fgene.2019.00524.
- Glynn, A.N. and Kashin, K. (2018), "Front-Door versus back-door adjustment with unmeasured confounding: Bias Formulas for front-door and hybrid adjustments with application to a job training program", J. Am. Stat. Assoc., 113(523), 1040-1049. https://doi.org/10.1080/01621459.2017.1398657.
- Heinze-Deml, C., Maathuis, M.H. and Meinshausen, N. (2018), "Causal structure learning", Annual Review of Statistics and Its Application, 5, 371-391. https://doi.org/10.1146/annurev-statistics-031017-100630.
- Hertz, K.D.D. (2003), "Limits of spalling of fire-exposed concrete", Fire Saf. J., 38(2), 103-116. https://doi.org/10.1016/S0379-7112(02)00051-6.
- Holland, P.W. (1986), "Statistics and causal inference", J. Am. Stat. Assoc., 81(396), 945-960. https://doi.org/10.1080/01621459.1986.10478354
- Huntington-Klein, N. (2021), The Effect : An Introduction to Research Design and Causality, Chapman and Hall/CRC, Boca Raton, FL,
- Imbens, G.W. (2020), "Potential outcome and directed acyclic graph approaches to causality: Relevance for empirical practice in economics", J. Econ. Liter., 58(4), 1129-1179. https://doi.org/10.1257/jel.20191597.
- Imbens, G.W. and Rubin, D.B. (2015), Causal Inference: For Statistics, Social, and Biomedical Sciences, Cambridge University Press, New York, NY,
- Kalainathan, D. and Goudet, O. (2022), Causal Discovery Toolbox Documentation - Causal Discovery Toolbox 0.5.23 documentation, https://fentechsolutions.github.io/CausalDiscoveryToolbox/html/index.html.
- Khoury, G.A. (2000), "Effect of fire on concrete and concrete structures", Prog. Struct. Eng. Mater., 2(4), 429-447. https://doi.org/10.1002/pse.51.
- Klemme, H.F. (2020), "Hume, David: A treatise of human nature", Kindlers Literatur Lexikon, Stuttgart Stuttgart, Germany.
- Kodur, V.K.R. (2000), "Spalling in high strength concrete exposed to fire: Concerns, causes, critical parameters and cures", Advanced Technology in Structural Engineering, American Society of Civil Engineers, Reston, VA,
- Kovalerchuk, B., Ahmad, M.A. and Teredesai, A. (2021), "Survey of explainable machine learning with visual and granular methods beyond quasi-Explanations", Studies in Computational Intelligence, Springer, Cham, Switzerland.
- Kovalerchuk, B. and Vityaev, E. (2000), Data Mining in Finance: Advances in Relational and Hybrid Methods|Guide Books, Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Lewis, D. (1973), "Causation", J. Philos., 70(17), 556-567. https://doi.org/10.2307/2025310.
- Hossin, M. and Sulaiman, M.N. (2015), "A Review on evaluation metrics for data classification evaluations", Int. J. Data Min. Knowl. Manag. Pr, 5(2), 1. https://doi.org/10.5121/ijdkp.2015.5201.
- Marti-Vargas, J.R., Ferri, F.J. and Yepes, V. (2013), "Prediction of the transfer length of prestressing strands with neural networks", Comput. Concrete, 12(2), 187-209. https://doi.org/10.12989/cac.2013.12.2.187.
- Michotte, A. (2017), The Perception of Causality, Routledge, New York, NY,
- Mitchell, T. (1997), Machine Learning, McGraw Hill, New York, NY,
- Muggleton, S. (1991), "Inductive logic programming", New Gen. Comput., 8, 295-318. https://doi.org/10.1007/BF03037089.
- Naser, M.Z. and Alavi, A.H. (2021), "Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences", Arch. Struct. Constr., 2021, 1-19. https://doi.org/10.1007/s44150-021-00015-8.
- Naser, M.Z. and Kodur, V.K. (2022), "Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns", Eng. Struct., 253, 113824. https://doi.org/10.1016/j.engstruct.2021.113824.
- Nogueira, A.R., Gama, J. and Ferreira, C.A. (2021), "Causal discovery in machine learning: Theories and applications", J. Dyn. Games, 8(3), 203. https://doi.org/10.3934/jdg.2021008.
- Nogueira, A.R., Pugnana, A., Ruggieri, S., Pedreschi, D. and Gama, J. (2022), "Methods and tools for causal discovery and causal inference", Wiley Interdiscip. Rev.: Data Min. Knowl. Discov., 12(2), e1449. https://doi.org/10.1002/widm.1449.
- pcalg (2022), Methods for Graphical Models and Causal Inference [R package pcalg version 2.7-6], Comprehensive R Archive Network (CRAN).
- Pearl, J. (2009a), "Causal inference in statistics: An overview", Stat. Surv., 3, 96-146. https://doi.org/10.1214/09-SS057.
- Pearl, J. (2009b), Causality, Cambridge University Press, Cambridge, UK.
- Pearl, J. (2013), "Causal diagrams and the identification of causal effects", Causality: Models, Reasoning, and Inference, Cambridge University Press, Cambridge, UK.
- Pearl, J. and Mackenzie, D. (2018a), The Book of Why: The New Science of Cause and Effect-Basic Books, Basic Books, New York, NY,
- Pearl, J. and Mackenzie, D. (2018b), The Book of Why: The New Science of Cause and Effect, Notices of the American Mathematical Society, Basic Books, New York, NY,
- Ramsey, J., Glymour, M., Sanchez-Romero, R. and Glymour, C. (2017), "A million variables and more: The fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images", Int. J. Data Sci. Anal., 3, 121-129. https://doi.org/10.1007/s41060-016-0032-z.
- Rubin, D.B. (2005), "Causal inference using potential outcomes", J. Am. Stat. Assoc., 100(469), 322-331. https://doi.org/10.1198/016214504000001880.
- Salmon, W.C. (2003), Causality and Explanation, Oxford University Press, Oxford, UK.
- Sanjayan, G. and Stocks, L.J. (1993), "Spalling of high-strength silica fume concrete in fire", ACI Mater. J., 90(2), 170-173. https://doi.org/10.14359/4015.
- Scheines, R. (1996), An Introduction to Causal Inference, Carnegie Mellon University, Pittsburgh, PA,
- Scholkopf, B. (2019), "Causality for machine learning", arXiv preprint, 1911, 10500.
- Sharma, A. and Kiciman, E. (2019), "DoWhy: A Python package for causal inference", https://github.com/microsoft/dowhy.
- Spirtes, P., Glymour, C. and Scheines, R. (2000), "Causation, prediction, and search (Springer lecture notes in statistics)", Lecture Notes in Statistics, MIT Press, Cambridge, MA,
- Spirtes, P. and Zhang, K. (2016), "Causal discovery and inference: concepts and recent methodological advances", Appl. Informat., 3(1), 1-28. https://doi.org/10.1186/s40535-016-0018-x.
- Surveys|NCSES|NSF (2022), https://www.nsf.gov/statistics/surveys.cfm.
- Thelwall, M. (2018), "Dimensions: A competitor to Scopus and the Web of Science?", J. Informetr., 12(2), 430-435. https://doi.org/10.1016/j.joi.2018.03.006.
- TIGRAMITE (2022), GitHub - Jakobrunge/Tigramite: Tigramite is a Python Package for Causal Inference with a Focus on Time Series Data, https://github.com/jakobrunge/tigramite.
- Tong, T. and Yu, T.E. (2018), "Transportation and economic growth in China: A heterogeneous panel cointegration and causality analysis", J. Transp. Geogr., 73, 120-130. https://doi.org/10.1016/j.jtrangeo.2018.10.016.
- Triantafillou, S. and Tsamardinos, I. (2016), "Score based vs constraint based causal learning in the presence of confounders", CEUR Workshop Proceedings.
- Uber Technologies (2020), About Causal ML - Causalml Documentation, Uber Technologies Inc., San Francisco, USA. https://causalml.readthedocs.io/en/latest/about.html.
- Vowels, M.J., Camgoz, N.C. and Bowden, R. (2021), "D'ya like DAGs? A survey on structure learning and causal discovery", ACM Comput. Surv., 55(4), 1-36. https://doi.org/10.1145/3527154.
- Wagner, C.H. (1982), "Simpson's paradox in real life", American Statistician, 36(1), 46-48. https://doi.org/10.1080/00031305.1982.10482778
- Wardhana, K. and Hadipriono, F.C. (2003a), "Analysis of recent bridge failures in the United States", J. Perfor. Constr. Facil., 17(3), 144-150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144).
- Wasserman, L. (2021), "Causal inference", Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Yaswanth, K.K., Revathy, J. and Gajalakshmi, P. (2021), "Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites", Comput. Concrete, 28(1), 55-68. https://doi.org/10.12989/cac.2021.28.1.055.
- Yu, K., Li, J. and Liu, L. (2016), "A review on algorithms for constraint-based causal discovery", arXiv preprint, 1611, 03977.