DOI QR코드

DOI QR Code

A Study on the Role of Public Sewage Treatment Facilities using Wastewater-based Epidemiology

하수기반역학을 적용한 공공하수처리시설 역할 재정립

  • Park Yoonkyung (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Yun Sang-Lean (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Yoon Younghan (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim Reeho (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Nishimura Fumitake (Department of Environmental Engineering, Kyoto University) ;
  • Sturat L. Simpson (Land & Water, The commonwealth Scientific and Industrial Research Organisation) ;
  • Kim Ilho (Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology)
  • 박윤경 (한국건설기술연구원 환경연구본부) ;
  • 윤상린 (한국건설기술연구원 환경연구본부) ;
  • 윤영한 (한국건설기술연구원 환경연구본부) ;
  • 김이호 (한국건설기술연구원 환경연구본부) ;
  • ;
  • ;
  • 김일호 (한국건설기술연구원 환경연구본부)
  • Received : 2023.01.30
  • Accepted : 2023.03.29
  • Published : 2023.05.30

Abstract

Public sewage treatment facilities are a necessary infrastructure for public health that treat sewage generated in cities and basin living areas and discharge it into rivers or seas. Recently, the role of public sewage treatment is receiving attention as a place of use of wastewater-based epidemiology (WBE), which analyzes human specific metabolic emissions or biomarkers present in sewage to investigate the environment to which the population is exposed in the water drain. WBE is mainly applied to investigate legal and water-law drug use or to predict and analyze the lifestyle of local residents. WBE has also been applied to predict and analyze the degree of infectious diseases that are prevalent worldwide, such as COVID-19. Since sewage flowing into public sewage treatment facilities includes living information of the population living in the drainage area, it is easy to collect basic data to predict the confirmation and spread of infectious diseases. Therefore, it is necessary to establish a new role of public sewage treatment facilities as an infrastructure necessary for WBE that can obtain information on the confirmation and spread of infectious diseases other than the traditional role of public sewage treatment. In South Korea, the sewerage supply rate is about 95.5% and the number of public sewage treatment facility is 4,209. This means that the infrastructure of sewerage is fully established. However, to successfully drive for WBE , research on monitoring and big-data analysis is needed.

Keywords

Acknowledgement

이 논문은 2023년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021K1A4A8A01079319).

References

  1. Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O'Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., and Mueller, J. F. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community, Science of the Total Environment, 728, 138764.
  2. Ahmed, W., Smith, W. J., Metcalfe, S., Jackson, G., Choi, P. M., Morrison, M., Field, D., Gyawali, P., Bivins, A., Bibby, K., and Simpson, S. L. (2022). Comparison of RT-qPCR and RT-dPCR platforms for the trace detection of SARS-CoV-2 RNA in wastewater, ACS ES&T Water.
  3. Asghar, H., Diop, O. M., Weldegebriel, G., Malik, F., Shetty, S., El Bassioni, L., Akande, A. O., Al Maamoun, E., Zaidi, S., Adeniji, A. J., Burus, C. C., Deshpande, J., Oberste, M. S., and Lowther, S. A. (2014). Environmental surveillance for polioviruses in the global polio eradication initiative, The Journal of Infectious Diseases, 210(suppl_1), S294-S303. https://doi.org/10.1093/infdis/jiu384
  4. Boogaerts, T., Ahmed, F., Choi, P. M., Tscharke, B., O'Brien, J., De Loof, H., Gao, J., Thomas, K., Mueller, F. J., Covaci, A., and van Nuijs, A. L. (2021). Current and future perspectives for wastewater-based epidemiology as a monitoring tool for pharmaceutical use, Science of the Total Environment, 789, 148047.
  5. Choi, P. M., Tscharke, B. J., Donner, E., O'Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O'Malley, E., Crosbie, N. D., and Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future, TrAC Trends in Analytical Chemistry, 105, 453-469. https://doi.org/10.1016/j.trac.2018.06.004
  6. Gibas, C., Lambirth, K., Mittal, N., Juel, M. A. I., Barua, V. B., Brazell, L. R., Jinton, K., Lontai, J., Strak, N., Young, I., Quach, C., Russ, M., Kauer, J., Nicolosi, B., Chen, D., Akella, S., Tang, W., Schlueter, J., and Munir, M. (2021). Implementing building-level SARS-CoV-2 wastewater surveillance on a university campus, Science of The Total Environment, 782, 146749.
  7. Gunnar, T. and Kankaanpaa, A. (2022). Wastewater-based epidemiology combined with forensic toxicological information: trends in drug use and impact of law enforcement activities, Toxicologie Analytique et Clinique, 34(3) S26-S27. https://doi.org/10.1016/j.toxac.2022.06.017
  8. Hellmer, M., Paxeus, N., Magnius, L., Enache, L., Arnholm, B., Johansson, A., Bergstrom, T., and Norder, H. (2014). Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks, Applied and Environmental Microbiology, 80(21), 6771-6781. https://doi.org/10.1128/AEM.01981-14
  9. Ihara, M. and Yasojima, M. (2021). Wastewater-based epidemiology for SARS-CoV-2 in wastewater treatment plant and individual buildings in Kinki region, Journal of Japan Society on Water Environment, 44(11) 364-369.
  10. Jho, E. H., Kim, H. I., Choi, Y., Youn, Y., Lee, D., and Kim, G. (2019). Wastewater-based epidemiology for the management of community lifestyle and health: An unexplored value of water infrastructure, Journal of Korean Society of Water and Wastewater, 33(1), 63-77. [Korean Literature] https://doi.org/10.11001/jksww.2019.33.1.063
  11. Kankaanpaa, A., Ariniemi, K., Heinonen, M., Kuoppasalmi, K., and Gunnar, T. (2016). Current trends in Finnish drug abuse: Wastewater based epidemiology combined with other national indicators, Science of the Total Environment, 568, 864-874. https://doi.org/10.1016/j.scitotenv.2016.06.060
  12. Larson, R. C., Berman, O., and Nourinejad, M. (2020). Sampling manholes to home in on SARS-CoV-2 infections, PloS one, 15(10), e0240007.
  13. Lee, J. Y., Lee, B., Jesmin, A., Ahn, C. H., and Kim, I. (2023) Pretreatment and Rapid Detection methods for Wastewater-Based Epidemiology, Journal of Korean Society on Water Environment, 39(1), 102-110. [Korean Literature]
  14. Lorenzo, M. and Pico, Y. (2019). Wastewater-based epidemiology: current status and future prospects, Current Opinion in Environmental Science & Health, 9, 77-84.
  15. Massano, M., Gerace, E., Alladio, E., Minella, M., Vincenti, M., and Salomone, A. (2022). Wastewater surveillance for different classes of pharmaceutical drugs: Focus on psychotropic drugs and their metabolites, Toxicologie Analytique et Clinique, 34(3), S70-S71. https://doi.org/10.1016/j.toxac.2022.06.096
  16. Shrestha, S., Yoshinaga, E., Chapagain, S. K., Mohan, G., Gasparatos, A., and Fukushi, K. (2021). Wastewater-based epidemiology for cost-effective mass surveillance of COVID-19 in low-and middle-income countries: Challenges and opportunities, Water, 13(20), 2897.
  17. Sinclair, R. G., Choi, C. Y., Riley, M. R., and Gerba, C. P. (2008). Pathogen surveillance through monitoring of sewer systems, Advances in Applied Microbiology, 65, 249.
  18. Xagoraraki, I. and O'Brien, E. (2020). Wastewater-based epidemiology for early detection of viral outbreaks, In Women in water quality (75-97), Springer, Cham.