DOI QR코드

DOI QR Code

Neuroimaging Characteristics of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) in Korean Based on Jeju Cohort: A Pictorial Essay

제주 코호트를 바탕으로 한 한국인 CADASIL 환자의 신경영상 특징: 임상화보

  • Yeh Rin Suh (Department of Radiology, Jeju National University Hospital, Jeju National University School of Medicine) ;
  • Ho Kyu Lee (Department of Radiology, Jeju National University Hospital, Jeju National University School of Medicine) ;
  • Kyeong Ho Jung (Department of Radiology, Jeju National University Hospital, Jeju National University School of Medicine) ;
  • Jung Seok Lee (Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine) ;
  • Jay Chol Choi (Department of Neurology, Jeju National University Hospital, Jeju National University School of Medicine)
  • 서예린 (제주대학교 의과대학 제주대학교병원 영상의학과) ;
  • 이호규 (제주대학교 의과대학 제주대학교병원 영상의학과) ;
  • 정경호 (제주대학교 의과대학 제주대학교병원 영상의학과) ;
  • 이정석 (제주대학교 의과대학 제주대학교병원 신경과) ;
  • 최재철 (제주대학교 의과대학 제주대학교병원 신경과)
  • Received : 2023.01.09
  • Accepted : 2023.03.16
  • Published : 2023.07.01

Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small artery vasculopathy caused by mutations in the NOTCH3 gene on chromosome 19. Jeju Island has the highest reported prevalence of CADASIL patients in the world. Even though most studies on the neuroimaging characteristics of CADASIL have focused on Western populations, there are notable differences in Korean CADASIL patients compared to those in Western countries, which may impact their clinical manifestations and prognosis. Herein, this pictorial essay presents the neuroimaging patterns of CADASIL in patients in Korea, with an emphasis on the differences observed from previous reports based on a Western patient population.

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (이하 CADASIL)은 19번 염색체의 NOTCH3 gene의 돌연변이에 의해 발생하는 것으로 알려진 유전성 뇌혈관 질환이다. 제주도는 전 세계적으로 CADASIL의 유병률이 높은 지역으로 알려져 있으나 제주 CADASIL에 대한 통합적인 신경영상 보고는 아직까지 없었다. CADASIL에서 보이는 신경영상의 특징에 대해서는 대부분 서양인 환자를 대상으로 보고되어 왔으며, 한국인의 임상양상과 신경영상의 특징에 대한 보고 역시 드물다. 본 임상화보에서는 제주도 CADASIL 코호트에서 수집한 데이터와 문헌을 바탕으로 한국인의 CADASIL 신경영상의 특성에 대해 고찰해 보고하고자 한다.

Keywords

References

  1. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol 2009;8:643-653  https://doi.org/10.1016/S1474-4422(09)70127-9
  2. Lee JS, Ko K, Oh JH, Park JH, Lee HK. Phenotypic features of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy subjects with R544C mutation. Dement Neurocogn Disord 2016;15:15-19  https://doi.org/10.12779/dnd.2016.15.1.15
  3. Dichgans M, Filippi M, Bruning R, Iannucci G, Berchtenbreiter C, Minicucci L, et al. Quantitative MRI in CADASIL: correlation with disability and cognitive performance. Neurology 1999;52:1361-1367  https://doi.org/10.1212/WNL.52.7.1361
  4. Chabriat H, Levy C, Taillia H, Iba-Zizen MT, Vahedi K, Joutel A, et al. Patterns of MRI lesions in CADASIL. Neurology 1998;51:452-457  https://doi.org/10.1212/WNL.51.2.452
  5. Lee JS, Koh MJ, Lee HK, Choi JC. Impact of brain MRI markers on major and mild vascular cognitive impairment in CADASIL. J Korean Neurol Assoc 2022;40:39-46  https://doi.org/10.17340/jkna.2022.1.5
  6. Lee JS, Ko K, Oh JH, Park JH, Lee HK, Floriolli D, et al. Cerebral microbleeds, hypertension, and intracerebral hemorrhage in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Front Neurol 2017;8:203 
  7. Lee JS, Ko K, Oh JH, Park JH, Lee HK, Kim JG. Age-related spatial distribution of cerebral microbleeds in patients with CADASIL. J Neurosonol Neuroimag 2018;10:115-121  https://doi.org/10.31728/jnn.2018.00019
  8. Lee JS, Ko K, Oh JH, Choi JC, Kim JG. Clinical impact of Cerebral Microbleeds on cognition in patients with CADASIL short title: clinical impact of cerebral microbleeds in CADASIL. J Med Life Sci 2018;15:89-94  https://doi.org/10.22730/jmls.2018.15.2.89
  9. Lee JS, Kang CH, Park SQ, Choi HA, Sim KB. Clinical significance of cerebral microbleeds locations in CADASIL with R544C NOTCH3 mutation. PLoS One 2015;10:e0118163 
  10. Lee JS, Choi JC, Kang SY, Kang JH, Na HR, Park JK. Effects of lacunar infarctions on cognitive impairment in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Clin Neurol 2011;7:210-214  https://doi.org/10.3988/jcn.2011.7.4.210
  11. Lee JS, Choi JC, Jeon BH, Kang CH, Kang JH, Kang SY, et al. Magnetic resonance imaging findings in the brains of patients with CADASIL. J Med Life Sci 2014;11:82-86  https://doi.org/10.22730/jmls.2014.11.1.82
  12. Lee JS. P3-097: Hypertension, cognitive function and ventricular volume in people with CADASIL. Alzheimers Dement 2013;9:P587 
  13. Song JK, Noh YO, Lee JS. Cognitive profile of CADASIL patients with R544C Notch3 mutation. Eur Neurol 2014;71:217-222  https://doi.org/10.1159/000356199
  14. Choi JC, Song SK, Lee JS, Kang SY, Kang JH. Headache among CADASIL patients with R544C mutation: prevalence, characteristics, and associations. Cephalalgia 2014;34:22-28  https://doi.org/10.1177/0333102413497598
  15. Choi JC, Song SK, Lee JS, Kang SY, Kang JH. Diversity of stroke presentation in CADASIL: study from patients harboring the predominant NOTCH3 mutation R544C. J Stroke Cerebrovasc Dis 2013;22:126-131  https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.07.002
  16. Kim Y, Lee SH. Novel characteristics of race-specific genetic functions in Korean CADASIL. Medicina (Kaunas) 2019;55:521 
  17. van den Boom R, Lesnik Oberstein SA, Ferrari MD, Haan J, van Buchem MA. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages--3rd6th decades. Radiology 2003;229:683-690  https://doi.org/10.1148/radiol.2293021354
  18. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838  https://doi.org/10.1016/S1474-4422(13)70124-8
  19. Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 1988;151:559-566  https://doi.org/10.2214/ajr.151.3.559
  20. Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry 2008;64:273-280  https://doi.org/10.1016/j.biopsych.2008.03.024
  21. Park JH, Lee J, Yang HJ, Lee S, Kim KW. Three types of white matter hyperintensities have different effects on depression and cognitive function in patients with CADASIL: neuroimaging/optimal neuroimaging measures for tracking disease progression. Alzheimers Dement 2020;16:e042217 
  22. Inzitari D. Leukoaraiosis: an independent risk factor for stroke? Stroke 2003;34:2067-2071  https://doi.org/10.1161/01.STR.0000080934.68280.82
  23. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;341:c3666 
  24. Auer DP, Putz B, Gossl C, Elbel G, Gasser T, Dichgans M. Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology 2001;218:443-451  https://doi.org/10.1148/radiology.218.2.r01fe24443
  25. Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, et al. Diagnostic strategies in CADASIL. Neurology 2002;59:1134-1138  https://doi.org/10.1212/WNL.59.8.1134
  26. Chabriat H, Mrissa R, Levy C, Vahedi K, Taillia H, Iba-Zizen MT, et al. Brain stem MRI signal abnormalities in CADASIL. Stroke 1999;30:457-459  https://doi.org/10.1161/01.STR.30.2.457
  27. Longstreth WT Jr, Bernick C, Manolio TA, Bryan N, Jungreis CA, Price TR. Lacunar infarcts defined by magnetic resonance imaging of 3660 elderly people: the cardiovascular health study. Arch Neurol 1998;55:1217-1225  https://doi.org/10.1001/archneur.55.9.1217
  28. Vermeer SE, Den Heijer T, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM. Incidence and risk factors of silent brain infarcts in the population-based Rotterdam scan study. Stroke 2003;34:392-396  https://doi.org/10.1161/01.STR.0000052631.98405.15
  29. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol 2007;6:611-619  https://doi.org/10.1016/S1474-4422(07)70170-9
  30. Seifert T, Enzinger C, Storch MK, Pichler G, Niederkorn K, Fazekas F. Acute small subcortical infarctions on diffusion weighted MRI: clinical presentation and aetiology. J Neurol Neurosurg Psychiatry 2005;76:1520-1524  https://doi.org/10.1136/jnnp.2005.063594
  31. Zhu YC, Tzourio C, Soumare A, Mazoyer B, Dufouil C, Chabriat H. Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke 2010;41:2483-2490  https://doi.org/10.1161/STROKEAHA.110.591586
  32. Bokura H, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol 1998;245:116-122  https://doi.org/10.1007/s004150050189
  33. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010;41:450-454  https://doi.org/10.1161/STROKEAHA.109.564914
  34. Groeschel S, Chong WK, Surtees R, Hanefeld F. Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 2006;48:745-754  https://doi.org/10.1007/s00234-006-0112-1
  35. Stojanov D, Vojinovic S, Aracki-Trenkic A, Tasic A, Benedeto-Stojanov D, Ljubisavljevic S, et al. Imaging characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL). Bosn J Basic Med Sci 2015;15:1-8  https://doi.org/10.17305/bjbms.2015.247
  36. Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130(Pt 8):1988-2003  https://doi.org/10.1093/brain/awl387
  37. Dichgans M, Holtmannspotter M, Herzog J, Peters N, Bergmann M, Yousry TA. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002;33:67-71  https://doi.org/10.1161/hs0102.100885
  38. Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011;32:528-534  https://doi.org/10.1159/000331466
  39. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam scan study. Neurology 2008;70:1208-1214  https://doi.org/10.1212/01.wnl.0000307750.41970.d9
  40. Liao YC, Hu YC, Chung CP, Wang YF, Guo YC, Tsai YS, et al. Intracerebral hemorrhage in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: prevalence, clinical and neuroimaging features and risk factors. Stroke 2021;52:985-993  https://doi.org/10.1161/STROKEAHA.120.030664
  41. Rinnoci V, Nannucci S, Valenti R, Donnini I, Bianchi S, Pescini F, et al. Cerebral hemorrhages in CADASIL: report of four cases and a brief review. J Neurol Sci 2013;330:45-51  https://doi.org/10.1016/j.jns.2013.04.002
  42. Choi JC, Lee JS, Kim KT. Importance of CADASIL research in Jeju: a review and update on epidemiology, diagnosis, and clinical spectrum. J Med Life Sci 2020;17:65-73  https://doi.org/10.22730/jmls.2020.17.3.65
  43. Jouvent E, Viswanathan A, Mangin JF, O'Sullivan M, Guichard JP, Gschwendtner A, et al. Brain atrophy is related to lacunar lesions and tissue microstructural changes in CADASIL. Stroke 2007;38:1786-1790 https://doi.org/10.1161/STROKEAHA.106.478263