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Abstract. In this paper, we extend some fixed point theorems in rectangular b-metric spaces

using subadditive altering distance and establishing the existence and uniqueness of fixed

point for Hardy-Roger type mappings. Our result generalizes many known results in fixed

point theory. Finally, we offer a example to illustrate our result.

1. Introduction

In 1922, Banach [2] developed what is now known as the Banach’s con-
traction principle, which is the main finding in fixed point theory. In fact,
Banach’s contraction principle is very important to show the existence of so-
lutions of some real world problems has been checked in various branches

0Received June 6, 2023. Revised July 12, 2023. Accepted July 18, 2023.
02020 Mathematics Subject Classification: 47H09, 47H10, 37C25.
0Keywords: Rectangular b-metric spaces, subadditive, Hardy-Roger type mappings.
0Corresponding author: P. Saipara(splernn@gmail.com).



1098 C. Khaofong, P. Saipara and A. Padcharoen

of mathematics, such as differential equations, integral equations, functional
analysis, etc. and one has introduced solutions for this problems via fixed
point theory. Additionally, applications of fixed point theory are not only
found in mathematics but also in a number of other areas, including computer
science, physics, chemistry, biology and economics. Particularly, a branch of
economics that uses fixed point theory tools to solve various game theory.
Many researchers have studied and expanded in various ways since Banach’s
contraction principle, including the following.

Theorem 1.1. ([2]) (Banach’s contraction principle) If (X, d) is a complete
metric space and T : X → X be a mapping such that for some α ∈ [0, 1),

d(Tx, Ty) ≤ αd(x, y) (1.1)

for each x, y ∈ X, then T has a unique fixed point in X.

It should be noted that while mappings T satisfying Theorem 1.1 is contin-
uous, but the mappings T satisfying the following contractions conditions are
not continuous. In 1968, Kannan’s contraction [20]: for some β ∈ [0, 12),

d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)] (1.2)

for each x, y ∈ X.

In 1971, Reich’s contraction [20]: for some α, β, γ ≥ 0 with α+ β + γ < 1,

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) (1.3)

for each x, y ∈ X.

In 1971, Ćirić’s contraction [20]: for some α, β, γ, δ ≥ 0 with α+β+γ+2δ <
1,

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) + δ[d(x, Ty) + d(y, Tx)] (1.4)

for each x, y ∈ X.

In 1972, Chatterjea’s contraction [20]: for some β ∈ [0, 12),

d(Tx, Ty) ≤ β[d(x, Ty) + d(y, Tx)] (1.5)

for each x, y ∈ X.

In 1972, Zamfirescu contractive conditions [20]: there exist real numbers
α, β, γ, 0 ≤ α < 1, 0 ≤ β < 1, γ < 1

2 , such that for each x, y ∈ X, at least one
of the following is true:

(i) d(Tx, Ty) ≤ αd(x, y);
(ii) d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)];

(iii) d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)].
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For each x, y ∈ X,x 6= y,

d(Tx, Ty)<max{d(x, y), [d(x, Tx)+d(y, Ty)]/2, [d(x, Ty)+d(y, Tx)]/2}.(1.6)

In 1973, Hardy and Rogers’s contraction [20]: for some α, β, γ, δ, η ≥ 0 with
α+ β + γ + δ + η < 1,

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + ηd(y, Tx) (1.7)

for each x, y ∈ X:

In addition, the Hardy and Rogers’s contraction was studied and extended
on various spaces by many researchers (see in [15, 22, 23, 24]).

Furthermore, Bakhtin [1] initially introduced the ideas of a b-metric spaces
in 1998 by defining them as follows. Let X be a nonempty set and the mapping
d : X ×X → [0,∞) satisfies:

(bM1) d(x, y) = 0, if and only if x = y for all x, y ∈ X;
(bM2) d(x, y) = d(y, x) for all x, y ∈ X;
(bM3) there exist a real number s ≥ 1 such that d(x, y) ≤ s[d(x, z) + d(z, y)]

for all x, y, z ∈ X.

Then d is called a b-metric on X and (X, d) is called a b-metric space (in short
bMS) with coefficient s.

The following is how Branciari [3] first described the ideas of a rectangle
metric space in 2000. Let X be a nonempty set, b ≥ 1 be a given real number
and d : X ×X → [0,∞] be a mapping such that for all x, y ∈ X:

(RM1) d(x, y) = 0, if and only if x = y;
(RM2) d(x, y) = d(y, x);
(RM3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all distinct points u, v ∈ X \

{x, y}.
Then d is called a rectangular metric on X and (X, d) is called a rectangular
metric space (in short RMS).

The concept of b-metric spaces was first introduced by Bakhtin [1] and
Czerwik [4], in such a way that triangle inequality is replaced by the b-triangle
inequality:

d(x, y) ≤ b[d(x, z) + d(z, y)]

for all pairwise distinct points x, y, z and b ≥ 1. Various fixed point results
were established on such spaces, see in ([5, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19]).

Recently, Rossafi and Massit [21] extended some fixed point theorems in
rectangular b-metric spaces using subadditive altering distance and establish-
ing the existence and uniqueness of fixed point for Kannan type mappings as
follows:
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Theorem 1.2. ([21]) Let (X, d) be a complete rectangular b-metric spaces with
coefficient b ≥ 1 and T : X → X be a mapping such that there exist p < 1

2b+1
satisfying

ϕ(d(Tx, Ty)) ≤ p[ϕ(d(x, y)) + ϕ(d(x, Tx)) + ϕ(d(y, Ty))]

for all x, y ∈ X. Then, T has a unique fixed point u ∈ X, the sequence {Tnx}
converges to u and for q = pb+2p

1−pb−p < 1, we have

ϕ(d(Tn+1x, Tnx)) ≤ qnd(x, Tx)), n = 0, 1, 2, ... .

Motivated and inspired by (1.7) and Theorem 1.2, we extend some fixed
point theorems in rectangular b-metric spaces using subadditive altering dis-
tance and establishing the existence and uniqueness of fixed point for Hardy-
Roger type mappings. Moreover, we give some non-trivial examples for sup-
port our results.

2. Preliminaries

Some definitions and concepts used in the primary results are presented in
this section. The following is a definition provided by George et al. [10] in
2015 for rectangular b-metric spaces (see [25]).

Definition 2.1. ([10]) Let X be a nonempty set, b ≥ 1 be a given real number,
and let d : X × X → [0,∞] be a mapping such that for all x, y ∈ X and all
distinct points u, v ∈ X, each distinct from x and y satisfies::

(RbM1) d(x, y) = 0, if and only if x = y;
(RbM2) d(x, y) = d(y, x);
(RbM3) d(x, y) ≤ b[d(x, u) + d(u, v) + d(v, y)] b-rectangular inequality.

Then (X, d) is said to be a rectangular b-metric spaces.

Example 2.2. Let X = N , define d : X ×X → X by

d(x, y) =

 0, if x = y,
9a, if x, y ∈ {3, 5},
2a, otherwise,

where a > 0 is a constant. Then (X, d) is a rectangular b-metric space with
coefficient b = 3 > 1.

The definition of a subadditive altering distance function is then provided
as follows.

Definition 2.3. A function ϕ : [0,∞)→ [0,∞) is called a subadditive altering
distance function if
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(i) ϕ is an altering distance function (that is, ϕ is continuous, strictly
increasing and ϕ(0) = 0);

(ii) ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ [0,∞).

Example 2.4. The functions ϕ1(x) = 3
√
x, ϕ2(x) = 2x

5 and ϕ3(x) = ln(x+1)
are subadditive altering distance functions.

We note that, if ϕ is subadditive, then for any nonnegative real number
k < 1, ϕ(d(x, y)) ≤ kϕ(d(a, b)) implies d(x, y) ≤ k′d(a, b) for some k′ < 1.

A bounded compact metric space [8] is a metric space X in which every
bounded sequence in X has a convergent subsequence. The same notion may
be defined in the case of rectangular b-metric spaces. The class of bounded
compact rectangular b-metric spaces is larger than that of sequentially compact
spaces as the rectangular b-metric space R of real numbers with the usual
metric is not sequentially compact but bounded compact.

Garai et al [9] defined T -orbitally compact metric spaces and derived a fixed
point result for the same. The definition of T -orbitally compactness can be
extended to rectangular b-metric spaces as follows.

Definition 2.5. Let (X, d) be a rectangular b-metric space and T be a self-
mapping on X. The orbit of T at x ∈ X is defined as

Ox(T ) = {x, Tx, T 2x, T 3x, ...}.

If every sequence in Ox(T ) has a convergent subsequence for all x ∈ X, X is
said to be T -orbitally compact.

3. Main results

Motivated and inspired by (1.7) and Theorem 1.2, we prove the existence of
a Hardy-Rogers mapping in a complete rectangular b-metric spaces as follows.

Theorem 3.1. Let (X, d) be a complete rectangular b-metric spaces with co-
efficient b ≥ 1 and T : X → X be a mapping such that there exist p < 1

3b+3
satisfying

ϕ(d(Tx, Ty)) ≤ p[ϕ(d(x, y)) + ϕ(d(x, Tx)) (3.1)

+ϕ(d(y, Ty)) + ϕ(d(x, Ty)) + ϕ(d(Tx, y))]

for all x, y ∈ X. Then, T has a unique fixed point u ∈ X, the sequence {Tnx}
converges to u and for q = pb+2p

1−pb−p < 1, we have

ϕ(d(Tn+1x, Tnx)) ≤ qnd(x, Tx)), n = 0, 1, 2, ....
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Proof. Let z = Tx for an arbitrary element x ∈ X. Then

ϕ(d(z, Tz)) = ϕ(d(Tx, Tz))

≤ p[ϕ(d(x, z)) + ϕ(d(x, Tx)) + ϕ(d(z, Tz))

+ ϕ(d(x, Tz)) + ϕ(d(Tx, z))]

≤ p[ϕ(d(x, Tx)) + ϕ(d(x, Tx)) + ϕ(d(Tx, Tz))

+ ϕ(d(x, Tz)) + ϕ(d(Tx, Tx))]

≤ pϕ(d(x, Tx)) + pϕ(d(x, Tx))

+ pϕ(d(Tx, Tz)) + pϕ(d(x, Tz))

≤ 2pϕ(d(x, Tx)) + pϕ(d(Tx, Tz))

+ pϕ([bd(x, Tx) + bd(Tx, Tz) + bd(Tz, Tz)])

≤ 2pϕ(d(x, Tx)) + pϕ(d(Tx, Tz))

+ pbϕ(d(x, Tx) + pbϕ(d(Tx, Tz)).

Hence we have

ϕ(d(Tx, Tz)) ≤ qϕ(d(x, Tx)),

where q = pb+2p
1−pb−p < 1, it implies that

d(Tx, Tz) ≤ q′d(x, Tx) (3.2)

for q′ < 1.
Now we assume that q′ = q. Let x0 ∈ X, consider the sequence {xn} in X

such that xn+1 = Txn for all n ∈ N. If there exists n ∈ N such that xn = Txn.
Then xn is a fixed point of T and the proof is finished. Hence, let xn 6= Txn
for all n ∈ N. Then for m ≥ 1 and r ≥ 1 it follows that

d(xm+r, xm) ≤ b[d(xm+r, xm+r−1) + d(xm+r−1, xm+r−2) + d(xm+r−2, xm)]

≤ bd(xm+r, xm+r−1) + bd(xm+r−1, xm+r−2)

+ b[b[d(xm+r−2, xm+r−3) + d(xm+r−3, xm+r−4)

+ d(xm+r−4, xm)]]

= bd(xm+r, xm+r−1) + bd(xm+r−1, xm+r−2)

+ b2d(xm+r−2, xm+r−3) + b2d(xm+r−3, xm+r−4)

+ b2d(xm+r−4, xm)
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≤ bd(xm+r, xm+r−1) + bd(xm+r−1, xm+r−2)

+ b2d(xm+r−2, xm+r−3) + b2d(xm+r−3, xm+r−4)

+ b2d(xm+r−4, xm+r−5) + ...+ b
r−1
2 d(xm−3, xm−2)

+ b
r−1
2 d(xm−2, xm−1) + b

r−1
2 d(xm−1, xm)

≤ bqm+r−1d(x1, x0) + bqm+r−2d(x1, x0) + b2qm+r−3d(x1, x0)

+ b2qm+r−4d(x1, x0) + b2qm+r−5d(x1, x0)

+ ...+ b
r−1
2 qm+2d(x1, x0)+b

r−1
2 qm+1d(x1, x0)+b

r−1
2 qmd(x1, x0)

= d(x1, x0)[bq
m+r−1 + b2qm+r−3 + b2qm+r−5 + ...+ b

r−1
2 qm+2]

+ d(x1, x0)[bq
m+r−2 + b2qm+r−4 + ...+ b

r−1
2 qm+1]

+ d(x1, x0)b
r−1
2 qm

≤ d(x1, x0)[Σ
r−1
2

i=1 b
iqm+r−(2i−1) + Σ

r−1
2

i=1 b
iqm+r−(2i) + b

r−1
2 qm]

→ 0 as m→∞.

So the sequence {xn} is Cauchy. Since X is complete, there exists x ∈ X such
that

lim
n→∞

xn = lim
n→∞

Txn−1 = x.

Since

d(Tx, x) ≤ b[d(Tx, Txn) + d(Txn, Txn+1) + d(Txn+1, x)]

= bd(Tx, Txn) + bd(Txn, Txn+1) + bd(Txn+1, x),

it implies that

ϕ(d(Tx, x)) ≤ bϕ(d(Tx, Txn)) + bϕ(d(Txn, Txn+1)) + bϕ(d(Txn+1, x))

≤ bp[ϕ(d(x, xn)) + ϕ(d(Tx, xn)) + ϕ(d(x, Tx))

+ ϕ(d(x, Txn)) + ϕ(d(Txn, xn))] + bp[ϕ(d(xn, xn+1))

+ ϕ(d(xn, Txn+1)) + ϕ(d(Txn, xn+1)) + ϕ(d(xn, Txn))

+ ϕ(d(xn+1, Txn+1))] + bϕ(d(Txn+1, x))

= bpϕ(d(x, xn)) + bpϕ(d(x, xn+1)) + bpϕ(d(x, Tx))

+ bpϕ(d(Tx, xn)) + bpϕ(d(xn+1, xn)) + bpϕ(d(xn, xn+1))

+ bpϕ(d(xn, xn+2)) + bpϕ(d(xn+1, xn+1)) + bpϕ(d(xn, xn+1))

+ bpϕ(d(xn+1, xn+2)) + bϕ(d(Txn+1, x))
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≤ bpϕ(d(x, xn)) + bpϕ(d(x, xn+1)) + bpϕ(d(x, Tx))

+ b2pϕ(d(Tx, x)) + b2pϕ(d(x, xn+1)) + b2pϕ(d(xn+1, xn))

+ bpϕ(d(xn+1, xn)) + bpϕ(d(xn, xn+1)) + bpϕ(d(xn, xn+2))

+ bpϕ(d(xn+1, xn+1)) + bpϕ(d(xn, xn+1))

+ bpϕ(d(xn+1, xn+2)) + bϕ(d(Txn+1, x)).

Then

(1− bp− b2p)ϕ(d(x, Tx)) ≤ bpϕ(d(x, xn)) + bpϕ(d(x, xn+1))

+ b2pϕ(d(x, xn+1)) + b2pϕ(d(xn+1, xn))

+ bpϕ(d(xn+1, xn)) + bpϕ(d(xn, xn+1))

+ bpϕ(d(xn, xn+2)) + bpϕ(d(xn+1, xn+1))

+ bpϕ(d(xn, xn+1)) + bpϕ(d(xn+1, xn+2))

+ bϕ(d(Txn+1, x))

→ 0 as n→∞.

This implies that Tx = x.
Now if y is an another fixed point of T , then

ϕ(d(Tx, Ty)) = ϕ(d(x, y))

≤ p[ϕ(d(x, y)) + ϕ(d(x, Tx))

+ ϕ(d(y, Ty)) + ϕ(d(x, Ty)) + ϕ(d(Tx, y))],

this implies that

ϕ(d(x, y)) ≤ 3pϕ(d(x, y)).

Since p < 1
3b+3 and ϕ is strictly increasing, so d(x, y) = 0. Therefore the fixed

point of T is unique. By (3.2) we have

ϕ(d(Tn+1x, Tnx)) ≤ qϕ(d(Tn−1x, Tnx))

≤ q2ϕ(d(Tn−2x, Tn−1x))

≤ q3ϕ(d(Tn−3x, Tn−2x))

...

≤ qnd(x, Tx)), n = 0, 1, 2, ...,

where q = pb+2p
1−pb−p < 1. This completes the proof. �

Example 3.2. Consider the complete rectangular b-metric space (X, d), where
X = R and d(x, y) = |x − y| for all x, y ∈ X. Define the self-mapping
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T : X → X by

T (x) =

{
0, if x ≤ 2,
−1

5 , if x > 2.

Then T is not continuous at 2. For ϕ(x) = x
5 , we have

ϕ(d(Tx, Ty)) =
1

5
d(Tx, Ty)

≤ p

5
[ϕ(d(x, y)) + ϕ(d(x, Tx))

+ϕ(d(y, Ty)) + ϕ(d(x, Ty)) + ϕ(d(Tx, y))].

For x ≤ 2 and y ≤ 2, we obtain

d(Tx, Ty) = 0

≤ p[|x− y|+ 2|x|+ 2|y|]
≤ p[b(|x− 0|+ |0− 0|+ |0− y|) + 2|x|+ 2|y|]
= p(b+ 2)[|x|+ |y|]

and ϕ(d(Tx, Ty)) ≤ p(b+ 2)[ϕ(|x|) + ϕ(|y|)].
For x > 2 and y > 2, we obtain

d(Tx, Ty) = 0

≤ p[|x− y|+ 2|x+
1

5
|+ 2|y +

1

5
|]

≤ p[b(|x− (−1

5
)|+ | − 1

5
− (−1

5
)|+ | − 1

5
− y|)

+2|x+
1

5
|+ 2|y +

1

5
|]

= p(b+ 2)[|x+
1

5
|+ |y +

1

5
|]

≤ p(b+ 2)(x+ y +
2

5
)

and ϕ(d(Tx, Ty)) ≤ p(b+2)
5 (x + y + 2

5). Thus, T satisfies (3.1). Therefore, T
has a unique fixed point x = 0.

From Theorem 3.1, if ϕ(∆) = ∆, we get the result as follows.

Corollary 3.3. Let (X, d) be a complete rectangular b-metric spaces and T :
X → X be a mapping such that

d(Tx, Ty) ≤ d(x, y) + d(x, Tx) + d(y, Ty) + d(x, Ty) + d(Tx, y), (3.3)

where p < 1
3b+3 . Then T has a fixed point in X.
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Proof. Follow the proof of Theorem 3.1, when we take ϕ(∆) = ∆, we get the
result. �

From Theorem 3.1, if d(x, y) = d(x, Ty) = d(Tx, y) = 0, we get the result
as follows.

Corollary 3.4. Let (X, d) be a complete rectangular b-metric spaces with co-
efficient b ≥ 1 and T : X → X be a mapping such that there exist p < 1

2b+1
satisfying

ϕ(d(Tx, Ty)) ≤ p[ϕ(d(x, y)) + ϕ(d(x, Tx)) + ϕ(d(y, Ty))] (3.4)

for all x, y ∈ X. Then, T has a unique fixed point u ∈ X, the sequence {Tnx}
converges to u and for q = 2p

1−p < 1 we have

ϕ(d(Tn+1x, Tnx)) ≤ qnd(x, Tx)), n = 0, 1, 2, ....

Proof. See main result in [21]. �

Theorem 3.5. Let (X, d) be a complete rectangular b-metric spaces with co-
efficient b ≥ 1 and T : X → X be a mapping such that there exist p1 + p2 +
p3 + p4 + p5 < 1 and p5 < 1 satisfying

ϕ(d(Tx, Ty)) ≤ p1ϕ(d(x, y)) + p2ϕ(d(x, Tx)) + p3ϕ(d(y, Ty)) (3.5)

+p4ϕ(d(x, Ty)) + p5ϕ(d(Tx, y))]

for all x, y ∈ X. Then, T has a unique fixed point u ∈ X, the sequence {Tnx}
converges to u and for q = p1+p2+p4b

1−p3−p4b < 1, we have

ϕ(d(Tn+1x, Tnx)) ≤ qnd(x, Tx)), n = 0, 1, 2, ....

Proof. Follow the proof of Theorem 3.1, when we consider a metric space
(X, d) and ϕ(∆) = ∆. �

In the next theorem, p is independent of the coefficient b of the rectangular
b-metric space.

Theorem 3.6. Let (X, d) be a bounded compact rectangular b-metric space
and T : X → X be a continuous mapping satisfying (3.1) for some 0 ≤ p < 1

5 .
Then T has a unique fixed point u ∈ X and for every x0 ∈ X, the sequence
{Tnx0} converges to u.
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Proof. Let x0 ∈ X be an arbitrary point. Consider a sequence {xn}, where
xn = Tnx0 for all n ∈ N. Then by (3.1) we have

ϕ(d(xn, xn+1)) = ϕ(d(Tnx0, T
n+1x0))

= ϕ(d(T (Tn−1x0), T (Tnx0)))

≤ p[ϕ(d(Tn−1x0, T
nx0)) + ϕ(d(Tn−1x0, T (Tn−1x0)))

+ ϕ(d(Tnx0, T (Tnx0))) + ϕ(d(Tn−1x0, T (Tnx0)))

+ ϕ(d(T (Tn−1x0), T
nx0))]

= p[ϕ(d(xn−1, xn)) + ϕ(d(xn−1, xn)) + ϕ(d(xn, xn+1))

+ ϕ(d(xn−1, xn+1)) + ϕ(d(xn, xn))]

= 2pϕ(d(xn−1, xn)) + pϕ(d(xn, xn+1)) + pϕ(d(xn−1, xn+1))

≤ 2pϕ(d(xn−1, xn)) + pϕ(d(xn, xn+1))

+ pb[ϕ(d(xn−1, xn)) + ϕ(d(xn, xn)) + ϕ(d(xn, xn+1))]

= (2p+ pb)ϕ(d(xn−1, xn)) + (2p+ pb)ϕ(d(xn, xn+1)).

It implies that

(1− 2p− pb)ϕ(d(xn, xn+1)) ≤ (2p+ pb)ϕ(d(xn−1, xn)), ∀n ∈ N.

Since 1− 2p− pb ≥ 2p+ pb, we get

d(xn, xn+1) ≤ d(xn−1, xn), ∀n ∈ N.

Hence, the sequence {d(xn, xn+1)}n∈N is decreasing and bounded below, thus,
there exists t ≥ 0 such that

lim
n→∞

d(xn, xn+1) = t.

For m,n ∈ N with n < m, we have

ϕ(d(xm, xn)) ≤ ϕ(d(xm−1, xm)) + ϕ(d(xn−1, xn))

and hence ϕ(d(xm, xn)) ≤ ϕ(t) as m,n→∞. This implies that d(xm, xn) ≤ t
as m,n→∞, so, {xn} is a bounded sequence. Hence, {xn} has a subsequence
which converges to u, that is, limk→∞ xnk

= u. By the continuity of the
mapping T we obtain

Tu = T ( lim
k→∞

xnk
) = T ( lim

k→∞
Tnk+1x0) = T ( lim

k→∞
Tnk+2x0) = u,

so, u is a fixed point of T .
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Finally, we show the uniqueness of the fixed point of T . Let z be an another
fixed point of T . Then

ϕ(d(Tz, Tu)) ≤ p[ϕ(d(z, u)) + ϕ(d(z, Tz)) + ϕ(d(u, Tu))

+ ϕ(d(z, Tu)) + ϕ(d(u, Tz))]

= p[ϕ(d(z, u))+ϕ(d(z, z))+ϕ(d(u, u))+ϕ(d(z, u))+ϕ(d(u, z))]

= 3pϕ(d(z, u)),

it implies that

(1− 3p)ϕ(d(Tz, Tu)) ≤ 0,

which is a contradiction. Hence, u = z. This completes the proof. �

Example 3.7. Let (X, d) be a bounded compact rectangular b-metric space,
where X = [0,∞) and

d(x, y) =

{
|x+ y|, x 6= y,
0, x = y.

Define T : X → X by

T (x) =


1
5 , if 0 ≤ x ≤ 2,

1
x , if x > 2.

Then, for ϕ(∆) = 1
5∆, we have

d(Tx, Ty) <
1

5
[d(x, y) + d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)].

For x 6= y and x, y > 2, we have

d(Tx, Ty) = |1
x

+
1

y
| < 1

and

1

5
[d(x, y) + d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)]

=
1

5
[|x+ y|+ |x+

1

x
|+ |y +

1

y
|+ |x+

1

y
|+ |y +

1

x
|]

> 1.

Similarly, for 0 ≤ x ≤ 2 and y > 2, we have

d(Tx, Ty) = |1
5

+
1

y
|
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and

1

5
[d(x, y) + d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)]

=
1

5
[|x+ y|+ |x+

1

5
|+ |y +

1

y
|+ |x+

1

y
|+ |y +

1

5
|]

> |1
5

+
1

y
|.

Thus, T has a unique fixed point x = 1
5 .

It is easy to see that every compact rectangular b-metric space is T -orbitally
compact. Also the bounded compactness and T -orbitally compactness are
totally independent. Moreover, T -orbitally compactness of X does not give to
be complete.

Theorem 3.8. Let (X, d) be a T -orbitally compact rectangular b-metric space
and T satisfying (3.1) with p < 1

5 and bp < 1. Then T has a unique fixed point
u and

lim
n→∞

Tnx = u, ∀x ∈ X.

Proof. Let x0 ∈ X be arbitrary but fixed, and consider the iterative sequence
{xn}, where xn = Tnx0 for each n ∈ N. Now, we denote dn = d(xn, xn+1) for
n ∈ N. Then by (3.1) we have

ϕ(dn) ≤ 2pϕ(dn−1) + pϕ(dn) + pϕ(d(xn−1, xn+1))

≤ (2p+ pb)ϕ(dn−1) + (2p+ pb)ϕ(dn),

it implies that

(1− 2p− pb)ϕ(dn) ≤ (2p+ pb)ϕ(dn−1).

Since 1 − 2p − pb ≥ 2p + pb, p < 1
5 and ϕ is strictly increasing, we get

dn < dn−1, this show that {dn} is a strictly decreasing sequence of non negative
real numbers and convergent. Since X is T -orbitally compact, so {xn} has a
convergent subsequence {xnk

} with limk→∞ xnk
= u

lim
k→∞

dnk
= lim

k→∞
d(xnk

, xnk+1)

= d( lim
k→∞

xnk
, lim
k→∞

xnk+1)

= d(u, u)

= 0.

So, limn→∞ dn = 0. We have for n,m ∈ N,

ϕ(d(xn, xm)) ≤ (pb+ pb2)(ϕ(dn−1) + ϕ(dm−1)) + (pb+ pb2)ϕ(d(xn, xm),
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it implies that

(1− pb− pb2)ϕ(d(xn, xm) ≤ (pb+ pb2)(ϕ(dn−1) + ϕ(dm−1))

→ 0 as m,n→∞.

This means that the sequence {xn} is Cauchy and xn → u as n → ∞. Also
we have

ϕ(d(u, Tu) ≤ (2pb+ pb2)ϕ(d(u, xn)) + (2pb+ pb2)ϕ(d(xn−1, xn))

+ (2pb+ pb2)ϕ(d(xn, xn+1)) + pbϕ(d(u, xn+1))

+ (pb+ pb2)ϕ(d(u, Tu)).

This implies that

(1− pb− pb2)ϕ(d(u, Tu) ≤ (2pb+ pb2)[ϕ(d(u, xn)) + ϕ(d(xn−1, xn))

+ ϕ(d(xn, xn+1))] + pbϕ(d(u, xn+1))

→ 0 as m,n→∞.

Hence, Tu = u.
Next, let u∗ be an another fixed point of T . Then, we have

ϕ(d(u, u∗) = ϕ(d(Tu, Tu∗)

< ϕ(d(u, u∗) + ϕ(d(u, Tu) + ϕ(d(u∗, Tu∗)

+ ϕ(d(u, Tu∗) + ϕ(d(u∗, Tu)

= 3pϕ(d(u, u∗),

so, ϕ(d(u, u∗)) < 0 implies d(u, u∗) < 0 which is contradiction. Hence, T has
a unique fixed point. �

To find a solution, we assume that T is an asymptotically regular mapping,
that is, limn→∞ d(Tnx, Tn+1x) = 0 for all x ∈ N.

Theorem 3.9. Let (X, d) be a complete rectangular b-metric space and T :
X → X be an asymptotically regular mapping satisfying (3.1) for some p with
3bp < 1. Then T has a unique fixed point.

Proof. Let x ∈ X and define the sequence xn = Tnx, n ∈ N. Since T is an
asymptotically regular mapping, we get for m > n,

ϕ(d(Tn+1x, Tm+1x)) = ϕ(d(T (Tnx), T (Tmx))

≤ (2pb+ p)ϕ(d(Tnx, Tn+1x)

+(2pb+p)ϕ(d(Tmx, Tm+1x)+3pbϕ(d(Tn+1x, Tm+1x),
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it implies that

(1−3pb)ϕ(d(Tn+1x, Tm+1x) ≤ (2pb+p)[ϕ(d(Tnx, Tn+1x)+ϕ(d(Tmx, Tm+1x)]

→ 0 as m,n→∞.

So, d(Tn+1x, Tm+1x)→ 0 as m,n→∞. Thus {xn} is a Cauchy sequence and
convergent in X with limn→∞ xn = u. Hence, we have

ϕ(d(u, Tu)) ≤ ϕ(b[d(u, Tnx) + d(Tnx, Tn+1x) + d(Tn+1x, Tu)])

≤ bϕ(d(u, Tnx))+bϕ(d(T (Tn−1x), T (Tnx)))+bϕ(d(T (Tnx), Tu))

≤ bϕ(d(u, Tnx)) + bpϕ(d(Tn−1x, Tnx)) + bpϕ(d(Tn−1x, Tnx))

+ bpϕ(d(Tnx, Tn+1x)) + bpϕ(d(Tn−1x, Tn+1x))

+ bpϕ(d(Tnx, Tnx)) + bpϕ(d(Tnx, u)))

+ bpϕ(d(Tnx, Tn+1x))) + bpϕ(d(u, Tu)))

+ bpϕ(d(Tnx, Tu))) + bpϕ(d(Tn+1x, u)))

≤ bϕ(d(u, Tnx)) + bpϕ(d(Tn−1x, Tnx))

+ bpϕ(d(Tn−1x, Tnx)) + bpϕ(d(Tnx, Tn+1x))

+ b2pϕ(d(Tn−1x, Tnx)) + b2pϕ(d(Tnx, Tn+1x))

+ bpϕ(d(Tnx, u)) + bpϕ(d(Tnx, Tn+1x)) + bpϕ(d(u, Tu))

+ b2pϕ(d(Tnx, u)) + b2pϕ(d(u, Tu)) + bpϕ(d(Tn+1x, u)),

it implies that

(1−bp−b2p)ϕ(d(u, Tu)) ≤ (b+ 2bp+ b2p)ϕ(d(u, Tnx))

+ (2bp+ b2p)ϕ(d(Tn−1x, Tnx))

+ (2bp+ b2p)ϕ(d(Tnx, Tn+1x))

+ (bp+ b2p)ϕ(d(Tnx, u)) + bpϕ(d(Tn+1x, u))

as n→∞, we obtain d(u, Tu) = 0. Therefore, u is a fixed point of T . Let u∗

be an another fixed point of T . Then

ϕ(d(u, u∗) = ϕ(d(Tu, Tu∗)

< ϕ(d(u, u∗) + ϕ(d(u, Tu)

+ ϕ(d(u∗, Tu∗) + ϕ(d(u, Tu∗) + ϕ(d(u∗, Tu)

= 3pϕ(d(u, u∗),

so, ϕ(d(u, u∗)) < 0 implies d(u, u∗) < 0 which is contradiction. Hence, T has
a unique fixed point. �
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Example 3.10. Let (X, d) be a complete rectangular b-metric space and T :
X → X be an asymptotically regular mapping satisfying Tx = x

5 for all x ∈ X
and d(x, y) = |x+ y|, b = 2 and p < 1

6 . Then for ϕ(∆) =
√

∆, we have

ϕ(

√
|x+ y|2) = |x+ y| < 6(|x|+ |y|).

Therefore, T has a unique fixed point x = 0.
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