DOI QR코드

DOI QR Code

Modeling the Spatial Distribution of Black-Necked Cranes in Ladakh Using Maximum Entropy

  • Received : 2022.11.16
  • Accepted : 2023.04.05
  • Published : 2023.05.01

Abstract

The Tibetan Plateau is home to the only alpine crane species, the black-necked crane (Grus nigricollis). Conservation efforts are severely hampered by a lack of knowledge on the spatial distribution and breeding habitats of this species. The ecological niche modeling framework used to predict the spatial distribution of this species, based on the maximum entropy and occurrence record data, allowed us to generate a species-specific spatial distribution map in Ladakh, Trans-Himalaya, India. The model was created by assimilating species occurrence data from 486 geographical sites with 24 topographic and bioclimatic variables. Fourteen variables helped forecast the distribution of black-necked cranes by 96.2%. The area under the curve score for the model training data was high (0.98), indicating the accuracy and predictive performance of the model. Of the total study area, the areas with high and moderate habitat suitability for black-necked cranes were anticipated to be 8,156 km2 and 6,759 km2, respectively. The area with high habitat suitability within the protected areas was 5,335 km2. The spatial distribution predicted using our model showed that the majority of speculated conservation areas bordered the existing protected areas of the Changthang Wildlife Sanctuary. Hence, we believe, that by increasing the current study area, we can account for these gaps in conservation areas, more effectively.

Keywords

Acknowledgement

We thank the Director of the Enprotec India Foundation for providing the logistic support during the preparation of this manuscript.

References

  1. BirdLife International (2017). Grus nigricollis. The IUCN Red List of Threatened Species. Retrieved Apr 13, 2023 from http://www.iucnredlist.org/details/22692162/0.
  2. Chandan, P., Chatterjee, A., Gautam, P., Seth, C.M., Takpa, J., Haq, S., Tashi, P., and Vidya, S. (2005). Black-necked CraneStatus, Breeding Productivity and Conservation in Ladakh, India 2000-2004. WWF-India.
  3. Chandan, P., Gautam, P., and Chatterjee, A. (2006). Nesting sites and breeding success of Black-necked Cranes Grus nigricollis in Ladakh, India. In G.C. Boere, C.A. Galbraith, and D.A. Stroud (Eds.), Waterbirds Around the World: A Global Review of the Conservation, Management and Research of the World's Major Flyways (pp. 311-314). Stationery Office.
  4. Chandan, P., Khan, A., Takpa, J., Hussain, S.A., Mehdi, K., Jamwal, P.S., et al. (2014). Status and distribution of Black-necked Crane (Grus nigricollis) in India. Zoological Research, 35(S1), 39-50. https://doi.org/10.13918/j.issn.2095-8137.2014.s1.0039
  5. Chase, J.M., and Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press.
  6. Deomurari, A., Sharma, A., Ghose, D., and Singh, R. (2023). Projected shifts in bird distribution in India under climate change. Diversity, 15, 404. https://doi.org/10.3390/d15030404
  7. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  8. Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., and Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  9. Fournier, A., Barbet-Massin, M., Rome, Q., and Courchamp, F. (2017). Predicting species distribution combining multiscale drivers. Global Ecology and Conservation, 12, 215-226. https://doi.org/10.1016/j.gecco.2017.11.002
  10. Han, X., Guo, Y., Mi, C., Huettmann, F., and Wen, L. (2017). Machine learning model analysis of breeding habitats for the black-necked crane in Central Asian uplands under anthropogenic pressures. Scientific Reports, 7, 6114. https://doi.org/10.1038/s41598-017-06167-2
  11. Han, X., Huettmann, F., Guo, Y., Mi, C., and Wen, L. (2018). Conservation prioritization with machine learning predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan Plateau for 2070. Regional Environmental Change, 18, 2173-2182. https://doi.org/10.1007/s10113-018-1336-4
  12. Hansen, M.C., Defries, R.S., Townshend, J.R.G., and Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21, 1331-1364. https://doi.org/10.1080/014311600210209
  13. Hijmans, R.J., and Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
  14. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. https://doi.org/10.1002/joc.1276
  15. Kaul, R., Kalsi, R.S., Singh, R., Basnet, H., and Awan, M.N. (2022). Cheer pheasant (Catreus wallichii) and the conservation paradox: importance of unprotected areas. Diversity, 14, 785. https://doi.org/10.3390/d14100785
  16. Li, Z., and Li, F. (2005). [Research on the Black-necked Crane]. Shanghai Scientific and Technological Education Publishing House.
  17. Liu, Q., Li, F.S., Buzzard, P., Qian, F.W., Zhang, F., Zhao, J.L., Yang, J.X., and Yang, X.J. (2012). Migration routes and new breeding areas of black-necked cranes. Wilson Journal of Ornithology, 124, 704-712. https://doi.org/10.1676/1559-4491-124.4.704
  18. Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
  19. Phillips, S.J., and Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  20. Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  21. Phillips, S.J., Miroslav, D., and Schapire, R.E. (2017). Maxent software for modeling species niches and distributions (version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2022-September-06.
  22. Potts, L.J., Gantz, J.D., Kawarasaki, Y., Philip, B.N., Gonthier, D.J., Law, A.D., et al. (2020). Environmental factors influencing fine-scale distribution of Antarctica's only endemic insect. Oecologia, 194, 529-539. https://doi.org/10.1007/s00442-020-04714-9
  23. Ramirez-Delgado, J.P., Di Marco, M., Watson, J.E.M., Johnson, C.J., Rondinini, C., Corredor Llano, X., et al. (2022). Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nature Communications, 13, 595. https://doi.org/10.1038/s41467-022-28270-3
  24. Rawat, G.S., and Adhikari, B.S. (2005). Floristics and distribution of plant communities across moisture and topographic gradients in Tso Kar Basin, Changthang Plateau, Eastern Ladakh. Arctic, Antarctic, and Alpine Research, 37, 539-544. https://doi.org/10.1657/1523-0430(2005)037[0539:FADOPC]2.0.CO;2
  25. Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J.P., and Dominguez, J. (2019). Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Scientific Reports, 9, 4221. https://doi.org/10.1038/s41598-019-40766-5
  26. Singh, R., Joshi, P.K., Kumar, M., Dash, P.P., and Joshi, B.D. (2009). Development of tiger habitat suitability model using geospatial tools-a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattisgarh India. Environmental Monitoring and Assessment, 155, 555-567. https://doi.org/10.1007/s10661-008-0455-7
  27. Singh, R., Krausman, P.R., Pandey, P., Maheshwari, A., Rawal, R.S., Sharma, S., et al. (2020). Predicting habitat suitability of snow leopards in the western Himalayan Mountains, India. Biology Bulletin, 47, 655-664. https://doi.org/10.1134/S106235902101012X
  28. Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., and Roy, P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87. https://doi.org/10.1016/j.ecoleng.2012.12.004
  29. Zhang, T., Ma, M., Ding, P., Xu, F., and Buzzard, P.J. (2012). Status and behavior of the black-necked crane (Grus nigricollis) in the Altun Mountain Reserve, Xinjiang. Chinese Birds, 3, 199-205. https://doi.org/10.5122/cbirds.2012.0021