DOI QR코드

DOI QR Code

Effects of a functional fatty acid blend on growth performance, intestinal morphology, and serum profiles in weaned piglets

  • Huakai Wang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yanan Wang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yu Zhang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Juntao Li (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yihai Mi (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yongqiang Xue (CALID BIOTECH (WUHAN) CO., LTD) ;
  • Jiaan Li (CALID BIOTECH (WUHAN) CO., LTD) ;
  • Yongxi Ma (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2022.07.25
  • Accepted : 2022.10.30
  • Published : 2023.05.01

Abstract

Objective: The objective of this study was to determine whether dietary supplementation with a functional fatty acid blend (FA) that contains 31.4% butyric acid and 4.99% medium-chain FA improve growth performance, antioxidant capacity, immunity status, and anti-inflammatory ability in weaned piglets. Methods: One hundred and forty-four healthy piglets (Duroc×Landrace×Yorkshire) with an average body weight (BW) of 7.98±3.43 kg were randomly divided into three groups with six replicate pens and eight piglets per pen: Normal control (NC): a corn-soybean basal diet; FA1: a basal diet supplemented with 1,000 mg/kg of a functional FA; FA2: a basal diet supplemented with 2,000 mg/kg of a functional FA. The experiment lasted for 28 d. On d 14 and 28, one piglet in each pen from NC and FA2 groups was randomly selected for antioxidative index and immunoglobulins. On d 28, one piglet in each pen from NC and FA2 groups was randomly selected for intestinal morphology and inflammatory factor. Results: We observed that FA supplementation linearly increased (p<0.05) average daily gain and the final BW. There was higher (p<0.05) catalase on d 14, and immunoglobulin (Ig) A and IgM on d 28 in piglets supplemented with FA2 than in the NC group. Moreover, dietary FA2 reduced (p<0.05) crypt depth of ileum in piglets. The concentrations of tumor necrosis factor-α, interleukin (IL)-1β, IL-8, and IL-10 in jejunum were lower (p<0.05) in the FA2 group compared with the NC group. Conclusion: Therefore, the overall results suggests that the FA may help to improve gut health, antioxidant status, and immune parameters resulting in the improvement of growth performance.

Keywords

Acknowledgement

We would like to acknowledge the CALID BIOTECH (WU-HAN) CO., LTD (Wuhan, China) for the functional fatty acid blend.

References

  1. Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol 2013;4:19. https://doi.org/10.1186/2049-1891-4-19
  2. McEwen SA. Antibiotic use in animal agriculture: what have we learned and where are we going? Anim. Biotechnol 2006;17:239-50. https://doi.org/10.1080/10495390600957233
  3. Li L, Wang H, Zhang N, et al. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. J Anim Sci 2022;100:skac046. https://doi.org/10.1093/jas/skac046
  4. Zhao M, Jiang Z, Cai H, et al. Modulation of the gut microbiota during high-dose glycerol monolaurate-mediated amelioration of obesity in mice fed a high-fat diet. mBio 2020;11:e00190-20. https://doi.org/10.1128/mBio.00190-20
  5. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366-84. https://doi.org/10.1017/S0954422410000247
  6. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011;3:858-76. https://doi.org/10.3390/nu3100858
  7. Dahmer PL, Leubcke GE, Lerner AB, Jones CK. Effects of medium-chain fatty acids as alternatives to ZnO or antibiotics in nursery pig diets. Transl Anim Sci 2020;4:txaa151. https://doi.org/10.1093/tas/txaa151
  8. Cui Z, Wang X, Liao S, et al. Effects of medium-chain fatty acid glycerides on nutrient metabolism and energy utilization in weaned piglets. Front Vet Sci 2022;9:938888. https://doi.org/10.3389/fvets.2022.938888
  9. Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol 2020;11:44. https://doi.org/10.1186/s40104-020-00446-1
  10. Cochrane RA, Huss AR, Aldrich GC, Stark CR, Jones CK. Evaluating chemical mitigation of salmonella typhimurium ATCC 14028 in animal feed ingredients. J Food Prot 2016;79:672-6. https://doi.org/10.4315/0362-028X.JFP-15-320
  11. Thomas LL, Woodworth JC, Tokach MD, et al. Evaluation of different blends of medium-chain fatty acids, lactic acid, and monolaurin on nursery pig growth performance. Transl Anim Sci 2020; 4:548-57. https://doi.org/10.1093/tas/txaa024
  12. Gebhardt JT, Thomson KA, Woodworth JC, et al. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. J Anim Sci 2020;98:skz358. https://doi.org/10.1093/jas/skz358
  13. NRC. Nutrient requirements of swine (11th revised ed.). Washington, DC, USA: National Academies Press; 2012.
  14. Chwen LT, Foo HL, Thanh NT, Choe DW. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas J Anim Sci 2013;26:700-4. https://doi.org/10.5713/ajas.2012.12561
  15. Lu JJ, Zou XT, Wang YM. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J Anim Feed Sci 2008;17:568-78. https://doi.org/10.22358/jafs/66685/2008
  16. Sun W, Sun J, Li M, et al. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs. J Appl Microbiol 2020;128:1613-23. https://doi.org/10.1111/jam.14612
  17. van der Meulen J, Bakker JG, Smits B, De Visser H. Effects of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Br J Nutr 1997;78:533-44. https://doi.org/10.1079/bjn19970173
  18. Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate. J Anim Sci 2007;85:1184-91. https://doi.org/10.2527/jas.2006-378
  19. Cao ST, Wang CC, Wu H, Zhang QH, Jiao LF, Hu CH. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018;96:1073-1083. https://doi.org/10.1093/jas/skx062
  20. Zhang WH, Jiang Y, Zhu QF, et al. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 2011;52:292-301. https://doi.org/10.1080/00071668.2011.578121
  21. Liu W, La ATZ, Evans A, et al. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. J Anim Sci Biotechnol 2021;12:2. https://doi.org/10.1186/s40104-020-00521-7
  22. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med 2014; 66:36-44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008
  23. Valentini J, Da Silva AS, Fortuoso BF, et al. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chem 2020;330:127187. https://doi.org/10.1016/j.foodchem.2020.127187
  24. Horton R, Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense. Front Immun 2013;4:200. https://doi.org/10.3389/fimmu.2013.00200
  25. Dang G, Wu W, Zhang H, Everaert N. A new paradigm for a new simple chemical: butyrate & immune regulation. Food Funct 2021;12:12181-93. https://doi.org/10.1039/d1fo02116h
  26. Fang CL, Sun H, Wu J, Niu HH, Feng J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J Anim Physiol Anim Nutr 2014;98:680-5. https://doi.org/10.1111/jpn.12122
  27. De Keyser K, Dierick N, Kanto U, et al. Medium-chain glycerides affect gut morphology, immune- and goblet cells in post-weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J Anim Physiol Anim Nutr (Berl) 2019;103:221-230. https://doi.org/10.1111/jpn.12998
  28. Vahjen W, Osswald T, Schafer K, Simon O. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch Anim Nutr 2007;61:90-102. https://doi.org/10.1080/17450390701203881
  29. Huang C, Song P, Fan P, Chengli H, Phil T, Xi M. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J Nutr 2015;145:2774-80. https://doi.org/10.3945/jn.115.217406
  30. Cui Z, Wang X, Hou Z, et al. Low-protein diet supplemented with medium-chain fatty acid glycerides improves the growth performance and intestinal function in post-weaning piglets. Animals 2020;10:1852. https://doi.org/10.3390/ani10101852
  31. Bertevello PL, De Nardi L, Torrinhas RS, Logullo AF, Waitzberg DL. Partial replacement of ω-6 fatty acids with medium-chain triglycerides, but not olive oil, improves colon cytokine response and damage in experimental colitis. J Parenter Enteral Nutr 2012;36:442-8. https://doi.org/10.1177/0148607111421788
  32. Papada E, Kaliora AC, Gioxari A, Papalois A, Forbes A. Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis. Br J Nutr 2014;111:1213-20. https://doi.org/10.1017/S0007114513003632
  33. Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol 2012;189:3439-48. https://doi.org/10.4049/jimmunol.1201168
  34. Weber TE, Kerr BJ. Butyrate differentially regulates cytokines and proliferation in porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2006;113:139-47. https://doi.org/10.1016/j.vetimm.2006.04.006
  35. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989;170:2081-95. https://doi.org/10.1084/jem.170.6.2081