Acknowledgement
We would like to acknowledge the CALID BIOTECH (WU-HAN) CO., LTD (Wuhan, China) for the functional fatty acid blend.
References
- Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol 2013;4:19. https://doi.org/10.1186/2049-1891-4-19
- McEwen SA. Antibiotic use in animal agriculture: what have we learned and where are we going? Anim. Biotechnol 2006;17:239-50. https://doi.org/10.1080/10495390600957233
- Li L, Wang H, Zhang N, et al. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. J Anim Sci 2022;100:skac046. https://doi.org/10.1093/jas/skac046
- Zhao M, Jiang Z, Cai H, et al. Modulation of the gut microbiota during high-dose glycerol monolaurate-mediated amelioration of obesity in mice fed a high-fat diet. mBio 2020;11:e00190-20. https://doi.org/10.1128/mBio.00190-20
- Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366-84. https://doi.org/10.1017/S0954422410000247
- Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011;3:858-76. https://doi.org/10.3390/nu3100858
- Dahmer PL, Leubcke GE, Lerner AB, Jones CK. Effects of medium-chain fatty acids as alternatives to ZnO or antibiotics in nursery pig diets. Transl Anim Sci 2020;4:txaa151. https://doi.org/10.1093/tas/txaa151
- Cui Z, Wang X, Liao S, et al. Effects of medium-chain fatty acid glycerides on nutrient metabolism and energy utilization in weaned piglets. Front Vet Sci 2022;9:938888. https://doi.org/10.3389/fvets.2022.938888
- Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol 2020;11:44. https://doi.org/10.1186/s40104-020-00446-1
- Cochrane RA, Huss AR, Aldrich GC, Stark CR, Jones CK. Evaluating chemical mitigation of salmonella typhimurium ATCC 14028 in animal feed ingredients. J Food Prot 2016;79:672-6. https://doi.org/10.4315/0362-028X.JFP-15-320
- Thomas LL, Woodworth JC, Tokach MD, et al. Evaluation of different blends of medium-chain fatty acids, lactic acid, and monolaurin on nursery pig growth performance. Transl Anim Sci 2020; 4:548-57. https://doi.org/10.1093/tas/txaa024
- Gebhardt JT, Thomson KA, Woodworth JC, et al. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. J Anim Sci 2020;98:skz358. https://doi.org/10.1093/jas/skz358
- NRC. Nutrient requirements of swine (11th revised ed.). Washington, DC, USA: National Academies Press; 2012.
- Chwen LT, Foo HL, Thanh NT, Choe DW. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas J Anim Sci 2013;26:700-4. https://doi.org/10.5713/ajas.2012.12561
- Lu JJ, Zou XT, Wang YM. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J Anim Feed Sci 2008;17:568-78. https://doi.org/10.22358/jafs/66685/2008
- Sun W, Sun J, Li M, et al. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs. J Appl Microbiol 2020;128:1613-23. https://doi.org/10.1111/jam.14612
- van der Meulen J, Bakker JG, Smits B, De Visser H. Effects of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Br J Nutr 1997;78:533-44. https://doi.org/10.1079/bjn19970173
- Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate. J Anim Sci 2007;85:1184-91. https://doi.org/10.2527/jas.2006-378
- Cao ST, Wang CC, Wu H, Zhang QH, Jiao LF, Hu CH. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018;96:1073-1083. https://doi.org/10.1093/jas/skx062
- Zhang WH, Jiang Y, Zhu QF, et al. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 2011;52:292-301. https://doi.org/10.1080/00071668.2011.578121
- Liu W, La ATZ, Evans A, et al. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. J Anim Sci Biotechnol 2021;12:2. https://doi.org/10.1186/s40104-020-00521-7
- Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med 2014; 66:36-44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008
- Valentini J, Da Silva AS, Fortuoso BF, et al. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chem 2020;330:127187. https://doi.org/10.1016/j.foodchem.2020.127187
- Horton R, Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense. Front Immun 2013;4:200. https://doi.org/10.3389/fimmu.2013.00200
- Dang G, Wu W, Zhang H, Everaert N. A new paradigm for a new simple chemical: butyrate & immune regulation. Food Funct 2021;12:12181-93. https://doi.org/10.1039/d1fo02116h
- Fang CL, Sun H, Wu J, Niu HH, Feng J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J Anim Physiol Anim Nutr 2014;98:680-5. https://doi.org/10.1111/jpn.12122
- De Keyser K, Dierick N, Kanto U, et al. Medium-chain glycerides affect gut morphology, immune- and goblet cells in post-weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J Anim Physiol Anim Nutr (Berl) 2019;103:221-230. https://doi.org/10.1111/jpn.12998
- Vahjen W, Osswald T, Schafer K, Simon O. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch Anim Nutr 2007;61:90-102. https://doi.org/10.1080/17450390701203881
- Huang C, Song P, Fan P, Chengli H, Phil T, Xi M. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J Nutr 2015;145:2774-80. https://doi.org/10.3945/jn.115.217406
- Cui Z, Wang X, Hou Z, et al. Low-protein diet supplemented with medium-chain fatty acid glycerides improves the growth performance and intestinal function in post-weaning piglets. Animals 2020;10:1852. https://doi.org/10.3390/ani10101852
- Bertevello PL, De Nardi L, Torrinhas RS, Logullo AF, Waitzberg DL. Partial replacement of ω-6 fatty acids with medium-chain triglycerides, but not olive oil, improves colon cytokine response and damage in experimental colitis. J Parenter Enteral Nutr 2012;36:442-8. https://doi.org/10.1177/0148607111421788
- Papada E, Kaliora AC, Gioxari A, Papalois A, Forbes A. Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis. Br J Nutr 2014;111:1213-20. https://doi.org/10.1017/S0007114513003632
- Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol 2012;189:3439-48. https://doi.org/10.4049/jimmunol.1201168
- Weber TE, Kerr BJ. Butyrate differentially regulates cytokines and proliferation in porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2006;113:139-47. https://doi.org/10.1016/j.vetimm.2006.04.006
- Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989;170:2081-95. https://doi.org/10.1084/jem.170.6.2081