DOI QR코드

DOI QR Code

Bioactive secondary metabolites in sea cucumbers and their potential to use in the functional food industry

  • KK Asanka Sanjeewa (Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura) ;
  • KHINM Herath (Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka)
  • 투고 : 2022.09.29
  • 심사 : 2022.11.25
  • 발행 : 2023.02.28

초록

The bioactive secondary metabolites produced by sea cucumbers are very diverse with differences in composition, linkages, molecular weight, and various functional properties. Due to their physicochemical properties, these bioactive molecules in sea cucumbers have found applications in various market segments such as functional foods and cosmetics. Sea cucumber side dishes are a prominent food item in traditional cuisine in East Asian countries such as South Korea, China, and Japan. In addition, many studies have reported that the consumption of sea cucumbers can reduce the risk of cardiovascular disease, the pathogenesis of cancer cells, chronic inflammatory diseases, etc. In particular, many studies have recently reported the potential of sea cucumbers to develop functional products to reduce inflammation, oxidative stress, diabetes, and cancer. Additionally, these bioactive properties associated with sea cucumbers make them ideal compounds for use as functional ingredients in functional food products. However, no report has yet reviewed the properties of sea cucumbers related to functional foods. Therefore, in this review, the primary focus is given to collecting published scientific data (from 2019 to 2023) on the bioactive properties of sea cucumbers relevant to the functional food industry.

키워드

참고문헌

  1. Alongi M, Anese M. Re-thinking functional food development through a holistic approach. J Funct Foods. 2021;81:104466.
  2. Aydin M, Sevgili H, Tufan B, Emre Y, Kose S. Proximate composition and fatty acid profile of three different fresh and dried commercial sea cucumbers from Turkey. Int J Food Sci Technol. 2011;46:500-8. https://doi.org/10.1111/j.1365-2621.2010.02512.x
  3. Bahroudi S, Nematollahi MA, Aghasadeghi MR, Nazemi M. In vitro evaluation of the antiviral activity and cytotoxicity effect of Holothuria leucospilota sea cucumber extracts from the Persian Gulf. Infect Epidemiol Microbiol. 2018;4:153-7.
  4. Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods: a review. Mar Drugs. 2011;9:1761-805. https://doi.org/10.3390/md9101761
  5. Carletti A, Cardoso C, Lobo-Arteaga J, Sales S, Juliao D, Ferreira I, et al. Antioxidant and anti-inflammatory extracts from sea cucumbers and tunicates induce a pro-osteogenic effect in zebrafish larvae. Front Nutr. 2022;9:888360.
  6. Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2:611-25. https://doi.org/10.3390/nu2060611
  7. Chahed L, Balti R, Elhiss S, Bouchemal N, Ajzenberg N, Ollivier V, et al. Anticoagulant activity of fucosylated chondroitin sulfate isolated from Cucumaria syracusana. Process Biochem. 2020;91:149-57. https://doi.org/10.1016/j.procbio.2019.12.006
  8. Cuc NT, Nga NT, Phuong TH, Cuong NX, Huong PTM, Van Minh C, et al. The anticancer activities of stichoposide D isolated from the sea cucumber Stichopus chloronotus on NTERA-2 cancer stem cells. J Biotechnol. 2020;18:273-81. https://doi.org/10.15625/1811-4989/18/2/14375
  9. Dai YL, Kim EA, Luo HM, Jiang YF, Oh JY, Heo SJ, et al. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus). J Food Sci Technol. 2020;57:2283-92. https://doi.org/10.1007/s13197-020-04266-z
  10. Dai YL, Zhou DY, Jiang YF, Zheng F, Yue H, You-Jin J. 6-Bromohypaphorine isolated from red sea cucumbers Apostichopus japonicus exhibits potent anticancer activity in A549 cancer cell line. Chin J Anal Chem. 2021;49:37-42. https://doi.org/10.1016/j.cjac.2021.05.001
  11. Dakrory AI, Fahmy SR, Soliman AM, Mohamed AS, Amer SAM. Protective and curative effects of the sea cucumber Holothuria atra extract against DMBA-induced hepatorenal diseases in rats. BioMed Res Int. 2015;2015:563652.
  12. Eriksson H, Clarke S. Chinese market responses to overexploitation of sharks and sea cucumbers. Biol Conserv. 2015;184:163-73. https://doi.org/10.1016/j.biocon.2015.01.018
  13. Esmat AY, Said MM, Soliman AA, El-Masry KSH, Badiea EA. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition. 2013;29:258-67. https://doi.org/10.1016/j.nut.2012.06.004
  14. Fan C, Ge X, Hao J, Wu T, Liu R, Sui W, et al. Identification of high iron-chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode. Food Chem. 2023;399:133912.
  15. Feng J, Zhang L, Tang X, Hu W, Zhou P. Major yolk protein from sea cucumber (Stichopus japonicus) attenuates acute colitis via regulation of microbial dysbiosis and inflammatory responses. Food Res Int. 2022;151:110841.
  16. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778-89. https://doi.org/10.1002/ijc.33588
  17. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-86. https://doi.org/10.1002/ijc.29210
  18. Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Kang N, et al. A fucoidan fraction purified from Chnoospora minima: a potential inhibitor of LPS-induced inflammatory responses. Int J Biol Macromol. 2017;104:1185-93. https://doi.org/10.1016/j.ijbiomac.2017.07.031
  19. Gao N, Chen R, Mou R, Xiang J, Zhou K, Li Z, et al. Purification, structural characterization and anticoagulant activities of four sulfated polysaccharides from sea cucumber Holothuria fuscopunctata. Int J Biol Macromol. 2020;164:3421-8. https://doi.org/10.1016/j.ijbiomac.2020.08.150
  20. Garcia-Candela E, Pariona-Velarde C, Mondragon-Martinez A, Chumpitaz-Cerrate V. Antiviral activity of the sea cucumber tegument extract (Pattalus mollis) on human rotavirus A (RVA). Nat Prod Res. 2021;35:1014-8. https://doi.org/10.1080/14786419.2019.1611807
  21. Gong PX, Wang BK, Wu YC, Li QY, Qin BW, Li HJ. Release of antidiabetic peptides from Stichopus japonicas by simulated gastrointestinal digestion. Food Chem. 2020;315:126273.
  22. Gozzo L, Viale P, Longo L, Vitale DC, Drago F. The potential role of heparin in patients with COVID-19: beyond the anticoagulant effect. A review. Front Pharmacol. 2020;11:1307.
  23. Guan R, Peng Y, Zhou L, Zheng W, Liu X, Wang P, et al. Precise structure and anticoagulant activity of fucosylated glycosaminoglycan from Apostichopus japonicus: analysis of its depolymerized fragments. Mar Drugs. 2019;17:195.
  24. Guo K, Su L, Wang Y, Liu H, Lin J, Cheng P, et al. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides. Food Funct. 2020;11:5004-16. https://doi.org/10.1039/D0FO00560F
  25. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  26. Hawas UW, Abou El-Kassem LT, Shaher FM, Ghandourah M, Al-Farawati R. Sulfated triterpene glycosides from the Saudi red sea cucumber Holothuria atra with antioxidant and cytotoxic activities. Thalassas Int J Mar Sci. 2021;37:817-24. https://doi.org/10.1007/s41208-021-00305-4
  27. He W, Sun H, Su L, Zhou D, Zhang X, Shanggui D, et al. Structure and anticoagulant activity of a sulfated fucan from the sea cucumber Acaudina leucoprocta. Int J Biol Macromol. 2020;164:87-94. https://doi.org/10.1016/j.ijbiomac.2020.07.080
  28. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2020;33:127-48. https://doi.org/10.1093/intimm/dxaa078
  29. Hoang L, Le Thi V, Tran Thi Hong H, Nguyen Van T, Nguyen Xuan C, Nguyen Hoai N, et al. Triterpene glycosides from the Vietnamese sea cucumber Holothuria edulis. Nat Prod Res. 2020;34:1061-7. https://doi.org/10.1080/14786419.2018.1548451
  30. Hossain A, Dave D, Shahidi F. Northern sea cucumber (Cucumaria frondosa): a potential candidate for functional food, nutraceutical, and pharmaceutical sector. Mar Drugs. 2020;18:274.
  31. Hossain A, Dave D, Shahidi F. Antioxidant potential of sea cucumbers and their beneficial effects on human health. Mar Drugs. 2022a;20:521.
  32. Hossain A, Yeo J, Dave D, Shahidi F. Phenolic compounds and antioxidant capacity of sea cucumber (Cucumaria frondosa) processing discards as affected by high-pressure processing (HPP). Antioxidants. 2022b;11:337.
  33. Janakiram NB, Mohammed A, Bryant T, Lightfoot S, Collin PD, Steele VE, et al. Improved innate immune responses by Frondanol A5, a sea cucumber extract, prevent intestinal tumorigenesis. Cancer Prev Res (Phila). 2015;8:327-37. https://doi.org/10.1158/1940-6207.CAPR-14-0380
  34. Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, et al. A review: mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol. 2021;35:20587384211002621.
  35. Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66:14-20. https://doi.org/10.1159/000371628
  36. Khaledi M, Moradipoodeh B, Moradi R, Baghbadorani MA, Mahdavinia M. Antiproliferative and proapoptotic activities of sea cucumber H. Leucospilota extract on breast carcinoma cell line (SK-BR-3). Mol Biol Rep. 2022;49:1191-200. https://doi.org/10.1007/s11033-021-06947-0
  37. Khotimchenko Y. Pharmacological potential of sea cucumbers. Int J Mol Sci. 2018;19:1342.
  38. Kim SK, Himaya SWA. Triterpene glycosides from sea cucumbers and their biological activities. In: Kim SK, editor. Advances in food and nutrition research. Volume 65. London: Academic Press; 2012. p. 297-319.
  39. Lawrence T, Gilroy DW. Chronic inflammation: a failure of resolution? Int J Exp Pathol. 2007;88:85-94. https://doi.org/10.1111/j.1365-2613.2006.00507.x
  40. Li C, Niu Q, Li S, Zhang X, Liu C, Cai C, et al. Fucoidan from sea cucumber Holothuria polii: structural elucidation and stimulation of hematopoietic activity. Int J Biol Macromol. 2020a;154:1123-31. https://doi.org/10.1016/j.ijbiomac.2019.11.036
  41. Li H, Yuan Q, Lv K, Ma H, Gao C, Liu Y, et al. Low-molecular-weight fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber as novel anticoagulants: a review. Carbohydr Polym. 2021;251:117034.
  42. Li Q, Jiang S, Shi W, Qi X, Song W, Mou J, et al. Structure characterization, antioxidant and immunoregulatory properties of a novel fucoidan from the sea cucumber Stichopus chloronotus. Carbohydr Polym. 2020b;231:115767.
  43. Li X, Roginsky AB, Ding XZ, Woodward C, Collin P, Newman RA, et al. Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound, Frondoside A. Ann NY Acad Sci. 2008;1138:181-98. https://doi.org/10.1196/annals.1414.025
  44. Lourenco SC, Moldao-Martins M, Alves VD. Antioxidants of natural plant origins: from sources to food industry applications. Molecules. 2019;24:4132.
  45. Luparello C, Ragona D, Asaro DML, Lazzara V, Affranchi F, Celi M, et al. Cytotoxic potential of the coelomic fluid extracted from the sea cucumber Holothuria tubulosa against triple-negative MDA-MB231 breast cancer cells. Biology (Basel). 2019;8:76.
  46. Ma Y, Gao N, Zuo Z, Li S, Zheng W, Shi X, et al. Five distinct fucan sulfates from sea cucumber Pattalus mollis: purification, structural characterization and anticoagulant activities. Int J Biol Macromol. 2021;186:535-43. https://doi.org/10.1016/j.ijbiomac.2021.07.049
  47. Mansour MB, Balti R, Yacoubi L, Ollivier V, Chaubet F, Maaroufi RM. Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int J Biol Macromol. 2019;121:1145-53. https://doi.org/10.1016/j.ijbiomac.2018.10.129
  48. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74-88. https://doi.org/10.1038/s41580-021-00404-3
  49. Mohamed AS, Mahmoud SA, Soliman AM, Fahmy SR. Antitumor activity of saponin isolated from the sea cucumber, Holothuria arenicola against ehrlich ascites carcinoma cells in swiss albino mice. Nat Prod Res. 2021;35:1928-32. https://doi.org/10.1080/14786419.2019.1644633
  50. Mohsen M, Yang H. Anatomic structure and function. In: Mohsen M, Yang H, editors. Sea cucumbers: aquaculture, biology and ecology. London: Academic Press; 2021. p. 19-36.
  51. Moradi Y, Nazemi M, Safari R. Evaluation of anti-inflammatory effects of methanolic extract of Persian Gulf sea cucumber (Holothuria leucospilota) on rats. J Fish. 2020;73:91-100.
  52. Murakami M, Harada M, Kamimura D, Ogura H, Okuyama Y, Kumai N, et al. Disease-association analysis of an inflammation-related feedback loop. Cell Rep. 2013;3:946-59. https://doi.org/10.1016/j.celrep.2013.01.028
  53. Ning Z, Wang P, Zuo Z, Tao X, Gao L, Xu C, et al. A fucan sulfate with pentasaccharide repeating units from the sea cucumber Holothuria floridana and its anticoagulant activity. Mar Drugs. 2022;20:377.
  54. Nursid M, Marraskuranto E, Kuswardini A, Winanto T. Screening of tyrosinase inhibitor, antioxidant and cytotoxicity of dried sea cucumber from Tomini Bay, Indonesia. Pharmacogn J. 2019;11:555-8. https://doi.org/10.5530/pj.2019.11.88
  55. Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective. Drug Resist Updat. 2021;59:100796.
  56. Olivera-Castillo L, Grant G, Kantun-Moreno N, Barrera-Perez HA, Montero J, Olvera-Novoa MA, et al. A glycosaminoglycan-rich fraction from sea cucumber Isostichopus badionotus has potent anti-inflammatory properties in vitro and in vivo. Nutrients. 2020;12:1698.
  57. Pahwa R, Goyal A, Jialal I. Chronic inflammation [Internet]. StatPearls. 2021 [cited 2022 Nov 1]. https://www.ncbi.nlm. nih.gov/books/NBK493173/
  58. Pangestuti R, Arifin Z. Medicinal and health benefit effects of functional sea cucumbers. J Tradit Complement Med. 2018;8:341-51. https://doi.org/10.1016/j.jtcme.2017.06.007
  59. Pranweerapaiboon K, Apisawetakan S, Nobsathian S, Itharat A, Sobhon P, Chaithirayanon K. An ethyl-acetate fraction of Holothuria scabra modulates inflammation in vitro through inhibiting the production of nitric oxide and pro-inflammatory cytokines via NF-κB and JNK pathways. Inflammopharmacology. 2020;28:1027-37. https://doi.org/10.1007/s10787-019-00677-3
  60. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol. 2013;75:588-602. https://doi.org/10.1111/j.1365-2125.2012.04425.x
  61. Ru R, Guo Y, Mao J, Yu Z, Huang W, Cao X, et al. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug. Nutrients. 2022;14:786.
  62. Safari R, Yaghoubzadeh Z. Antioxidant activity of bioactive peptides extracted from sea cucumber (Holothuria leucospilata). Int J Pept Res Ther. 2020;26:2393-8. https://doi.org/10.1007/s10989-020-10031-9
  63. Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym. 2017;177:451-9. https://doi.org/10.1016/j.carbpol.2017.09.005
  64. Santhanam R, Mohd Azam NS, Abdul Khadar AS, Louise A, Dominic G, Ahmad Sofian NS, et al. Anticancer potential of three sea cucumber species extracts on human breast cancer cell line. Squalen Bull Mar Fish Postharvest Biotechnol. 2022;17:85-94. https://doi.org/10.15578/squalen.669
  65. Sasongko H, Qanit WR, Raka Sukmabayu WS, Kristyawan SP, Sugihartini N, Kundarto W, et al. Cox-2 inhibition activities of creams containing anguilla bicolor and sea cucumbers extract on croton oil induced inflammation in mice. Pharmaciana. 2020;10.
  66. Scanes CG. Invertebrates and their use by humans. In: Scanes CG, Toukhsati SR, editors. Animals and human society. London: Academic Press; 2018. p. 181-93.
  67. Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, et al. Triterpene glycosides from the far eastern sea cucumber Psolus chitonoides: chemical structures and cytotoxicities of chitonoidosides E1, F, G, and H. Mar Drugs. 2021;19:696.
  68. Siro I, Kapolna E, Kapolna B, Lugasi A. Functional food. Product development, marketing and consumer acceptance: a review. Appetite. 2008;51:456-67. https://doi.org/10.1016/j.appet.2008.05.060
  69. Song M, Park DK, Cho M, Park HJ. Anti-inflammatory and anti-allergic activities of sea cucumber (Stichopus japonicus) extract. Food Sci Biotechnol. 2013;22:1661-6. https://doi.org/10.1007/s10068-013-0264-9
  70. Song S, Peng H, Wang Q, Liu Z, Dong X, Wen C, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct. 2020;11:7415-20. https://doi.org/10.1039/D0FO02017F
  71. Stanton C, Paul Ross R, Fitzgerald GF, Van Sinderen D. Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol. 2005;16:198-203. https://doi.org/10.1016/j.copbio.2005.02.008
  72. Sun H, Gao N, Ren L, Liu S, Lin L, Zheng W, et al. The components and activities analysis of a novel anticoagulant candidate dHG-5. Eur J Med Chem. 2020;207:112796.
  73. Toral-Granda V, Lovatelli A, Vasconcellos M. Sea cucumbers. A global review on fishery trade. Rome: Food and Agriculture Organization of the United Nations; 2008. p. 4-6.
  74. Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit. 2006;12:RA130-47.
  75. Ustyuzhanina NE, Bilan MI, Dmitrenok AS, Silchenko AS, Grebnev BB, Stonik VA, et al. Fucosylated chondroitin sulfates from the sea cucumbers Paracaudina chilensis and Holothuria hilla: structures and anticoagulant activity. Mar Drugs. 2020;18:540.
  76. Verma P, Mishra S. Antioxidants and disease prevention. Int J Adv Sci Tech Res. 2014;2:903-11.
  77. Wang J, Shi S, Li F, Du X, Kong B, Wang H, et al. Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques. LWT-Food Sci Technol. 2022a;160:113307.
  78. Wang T, Zheng L, Wang S, Zhao M, Liu X. Anti-diabetic and anti-hyperlipidemic effects of sea cucumber (Cucumaria frondosa) gonad hydrolysates in type II diabetic rats. Food Sci Hum Wellness. 2022b;11:1614-22. https://doi.org/10.1016/j.fshw.2022.06.020
  79. Wang T, Zheng L, Zhao T, Zhang Q, Liu Z, Liu X, et al. Anti-diabetic effects of sea cucumber (Holothuria nobilis) hydrolysates in streptozotocin and high-fat-diet induced diabetic rats via activating the PI3K/Akt pathway. J Funct Foods. 2020;75:104224.
  80. Wang X, Wang Y, Liu Y, Cong P, Xu J, Xue C. Hepatoprotective effects of sea cucumber ether-phospholipids against alcohol-induced lipid metabolic dysregulation and oxidative stress in mice. Food Funct. 2022c;13:2791-804. https://doi.org/10.1039/D1FO03833H
  81. Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinformatics study of sea cucumber peptides as antibreast cancer through inhibiting the activity of overexpressed protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform. 2021;20:11769351211031864.
  82. Wen J, Hu C, Fan S. Chemical composition and nutritional quality of sea cucumbers. J Sci Food Agric. 2010;90:2469-74. https://doi.org/10.1002/jsfa.4108
  83. Xia Y, Wang C, Yu D, Hou H. Methods of simultaneous preparation of various active substances from Stichopus chloronotus and functional evaluation of active substances. Food Agric Immunol. 2022;33:563-74. https://doi.org/10.1080/09540105.2022.2100322
  84. Yasman S, Yanuar A, Tamimi Z, Rezi Riadhi S. In silico analysis of sea cucumber bioactive compounds as anti-breast cancer mechanism using AutoDock Vina. Iran J Pharma Sci. 2020;16:1-8.
  85. Yi YS. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J Ethnopharmacol. 2021;278:114292.
  86. Yin R, Pan Y, Cai Y, Yang F, Gao N, Ruzemaimaiti D, et al. Re-understanding of structure and anticoagulation: fucosylated chondroitin sulfate from sea cucumber Ludwigothurea grisea. Carbohydr Polym. 2022;294:119826.
  87. Yuan Q, Li H, Wang Q, Sun S, Fang Z, Tang H, et al. Deaminative-cleaved S. monotuberculatus fucosylated glycosaminoglycan: structural elucidation and anticoagulant activity. Carbohydr Polym. 2022;298:120072.
  88. Zhang HJ, Chen C, Ding L, Shi HH, Wang CC, Xue CH, et al. Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice. Pharmacol Res. 2020;160:105191.
  89. Zhang X, Li H, Wang L, Zhang S, Wang F, Lin H, et al. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates. J Food Sci. 2021;86:3540-9. https://doi.org/10.1111/1750-3841.15834
  90. Zhao F, Liu Q, Cao J, Xu Y, Pei Z, Fan H, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in Goto-Kakizaki rats. Food Chem Toxicol. 2020;135:110886.
  91. Zhao H. Taxonomy and identification. In: Yang H, Hamel JF, Mercier A, editors. Developments in Aquaculture and Fisheries Science. Volume 39. London: Elsevier; 2015. p. 37-52.
  92. Zheng S, Wang Y, Wu J, Wang S, Wei H, Zhang Y, et al. Critical quality control methods for a novel anticoagulant candidate LFG-Na by HPSEC-MALLS-RID and bioactivity assays. Molecules. 2022;27:4522.
  93. Zheng W, Zhou L, Lin L, Cai Y, Sun H, Zhao L, et al. Physicochemical characteristics and anticoagulant activities of the polysaccharides from sea cucumber Pattalus mollis. Mar Drugs. 2019;17:198.
  94. Zhu Q, Lin L, Zhao M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: new prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int J Biol Macromol. 2020;159:34-45. https://doi.org/10.1016/j.ijbiomac.2020.05.043
  95. Zoepfl M, Dwivedi R, Taylor MC, Pomin VH, McVoy MA. Antiviral activities of four marine sulfated glycans against adenovirus and human cytomegalovirus. Antivir Res. 2021;190:105077.