DOI QR코드

DOI QR Code

Photocatalytic and photoelectrocatalytic properties of anodic titanium dioxide nanotubes based on anodizing conditions

양극산화 조건에 따른 이산화티타늄 나노튜브의 광촉매 및 광전기화학적 특성

  • Yeonjin Kim (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Rin Jung (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Jaewon Lee (Department of Chemistry and Chemical Engineering, Inha University) ;
  • JeongEun Yoo (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kiyoung Lee (Department of Chemistry and Chemical Engineering, Inha University)
  • 김연진 (인하대학교 화학.화학공학융합학과) ;
  • 정린 (인하대학교 화학.화학공학융합학과) ;
  • 이재원 (인하대학교 화학.화학공학융합학과) ;
  • 유정은 (인하대학교 화학.화학공학융합학과) ;
  • 이기영 (인하대학교 화학.화학공학융합학과)
  • Received : 2023.03.03
  • Accepted : 2023.03.29
  • Published : 2023.04.30

Abstract

Nanosized TiO2 has been widely investigated in photoelectrochemical or photocatalytic applications due to their intrinsic properties such as suitable band position, high photocorrosion resistance, and surface area. In this study, to achieve the high efficiency in photoelectrochemical and photocatalytic performance, TiO2 nanotubular structures were formed by anodization at various temperatures and times. The morphological and crystal structure of the anodized TiO2 nanotubes (NTs) were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The photoelectrochemical (PEC) properties and incident photon-to-current conversion efficiency (IPCE) of the TiO2 NTs were studied with different lengths and morphologies. From the detailed investigations, the optimum thickness of TiO2 nanotubes was 3 ㎛. Moreover, we found that the optimum photocatalytic pollutant removal efficiency of TiO2 nanotubes for photodegradation of Rhodamine B (RhB) under simulated solar light was 5.34 ㎛ of tube length.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1l1A3A01041454).

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at semiconductor electrode, Nature, 238 (1972) 37-38. https://doi.org/10.1038/238037a0
  2. S. Albu, P. Schmuki, Highly defined and ordered top-openings in TiO2 nanotube arrays, Phys. Status Solidi RRL, 4 (2010) 151-153. https://doi.org/10.1002/pssr.201004159
  3. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: Synthesis and applications, Angew. Chem. Int. Ed., 50 (2011) 2904-2939. https://doi.org/10.1002/anie.201001374
  4. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures, Small, 8 (2012) 3073-3103. https://doi.org/10.1002/smll.201200564
  5. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: A historical overview and future prospects, J. Appl. Phys., 44 (2005) 8269-8285. https://doi.org/10.1143/JJAP.44.8269
  6. M. Kim, N. Shin, J. Lee, K. Lee, Y. Kim, J. Choi, Photoelectrochemical water oxidation in anodic TiO2 nanotubes array: Importance of mass transfer, Electrochem. commun., 132 (2021) 1-6.
  7. Z. Zhang, M. Hossain, T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation, Int. J. Hydrog. Energy, 35 (2010) 8528-8535. https://doi.org/10.1016/j.ijhydene.2010.03.032
  8. K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114 (2014) 9385-9454. https://doi.org/10.1021/cr500061m
  9. Y. Divyasri, N. Reddy, K. Lee, M. Sakar, V. Rao, V. Venkatramu, M. Shankar, N. Reddy, Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation, Environ. Pollut., 269 (2021) 116170.
  10. J. Cai, J. Shen, X. Zhang, Y. Ng, J. Huang, W. Guo, C. Lin, Y. Lai, Light-driven sustainable hydrogen production utilizing TiO2 Nanostructures: A review, Small Methods, 3 (2019) 1800184.
  11. J. Yoo, K. Lee, TiO2 nanotubes fabricated by electrochemical anodization in molten o-H3PO4-based electrolyte: Properties and applications, Curr. Opin. Colloid Interface Sci., 63 (2023) 1-13.
  12. H. Yoo, M. Kim, Y. Kim, K. Lee, J. Choi, Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo) electrochemical reactions, Catalysts, 8 (2018) 1-25.
  13. D. Regonini, C . Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng. R, 74 (2013) 377-406. https://doi.org/10.1016/j.mser.2013.10.001
  14. J. Lee, H. Choi, M. Kim, Y. Lee, K. Lee, Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte, Appl. Chem. Eng., 31 (2020) 215-219.
  15. K. Lee, Principle of anodic TiO2 nanotube formations, Appl. Chem. Eng., 28 (2017) 601-606.
  16. P. Roy, D. Kim, K. Lee, E. Spieckerb, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2 (2010) 45-59. https://doi.org/10.1039/B9NR00131J
  17. M. Zare, S. Solaymani, A. Shafiekhani, S. Kulesza, S. Talu, M. Bramowicz, Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting, Sci. Rep., 8 (2018) 10870.
  18. M. Gea, C. Caoa, J. Huang, S. Li, S. Zhang, S. Deng, Q. Li, K. Zhang, Y. Lai, Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: A review, Nanotechnol. Rev., 5 (2016) 75-112.
  19. P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles, Electrochem. commun., 11 (2009) 1001-1004. https://doi.org/10.1016/j.elecom.2009.02.049
  20. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep., 4 (2014) 4043.
  21. G. Cha, P. Schmuki, M. Altomare, Freestanding membranes to study the optical properties of anodic TiO2 nanotube layers, Chem. Asian J., 11 (2016) 789-797. https://doi.org/10.1002/asia.201501336
  22. G. Cha, M. Altomare, N. Nguyen, N. Taccardi, K. Lee, P. Schmuki, Double-side co-catalytic activation of anodic TiO2 nanotube membranes with sputter-coated Pt for photocatalytic H2 generation from water/methanol mixtures, Chem. Asian J., 12 (2017) 314-323. https://doi.org/10.1002/asia.201601356
  23. C. Adan, J. Marugan, E. Sanchez, C. Pablos, R. Grieken, Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes, Electrochim. Acta, 191 (2016) 521-529. https://doi.org/10.1016/j.electacta.2016.01.088
  24. N. Denisov, J. Yoo, P. Schmuki, Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes, Electrochim. Acta, 319 (2019) 61-71. https://doi.org/10.1016/j.electacta.2019.06.173
  25. T. Kim, S. Patil, K. Lee, Nanospaceconfined worm-like BiVO4 in TiO2 space nanotubes (SPNTs) for photoelectrochemical hydrogen production, Electrochim. Acta, 432 (2022) 141213.
  26. X. Zhou, N. Denisov, G. Cha, I. Hwang, P. Schmuki, Photoelectrochemical performance of TiO2 photoanodes: Nanotube versus nanoflake electrodes, Electrochem. commun., 124 (2021) 106937.
  27. R. Beranek, J. Macak, M. Gartner, K. Meyer, P. Schumuki, Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes, Electrochim. Acta, 54 (2009) 2640-2646. https://doi.org/10.1016/j.electacta.2008.10.063
  28. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S. A. Deyab, Y. Lai, Onedimensional TiO2 nanotube photocatalysts for solar water splitting, Adv. Sci., 4 (2017) 1600152.
  29. C.B.D. Marien, T. Cottineau, D. Robert, P. Drogui, TiO2 nanotube arrays: Influence of tube length on the photocatalytic degradation of paraquat, Appl. Catal. B, 194 (2016) 1-6. https://doi.org/10.1016/j.apcatb.2016.04.040
  30. P. Makula, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra, J. Phys. Chem. Lett., 9 (2018) 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892
  31. S. Kurian, H. Seo, H. Jeon, Significant enhancement in visible light absorption of TiO2 nanotube arrays by surface band gap tuning, J. Phys. Chem. C, 117 (2013) 16811-16819. https://doi.org/10.1021/jp405207e
  32. K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C, 13 (2012) 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  33. A.P. Torane, A.B. Ubale, K.G. Kanade, P.K. Pagare, Photocatalytic dye degradation study of TiO2 material, Mater. Today, 43 (2021) 2738-2741. https://doi.org/10.1016/j.matpr.2020.06.476
  34. M.R.A. Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UVTiO2 photocatalysis in textile wastewater treatment: A review, J. Environ. Chem. Eng., 7 (2019) 103248.
  35. A. Gautam, A. Kshirsagar, R. Biswas, S. Banerjee, P. K. Khanna, Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles, RCS Adv., 6 (2016) 2746-2759. https://doi.org/10.1039/C5RA20861K
  36. C. Xu, G. P. Rangaiah, X. S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and Modeling Study, Ind. Eng. Chem. Res., 53 (2014) 14641-14649. https://doi.org/10.1021/ie502367x
  37. A. Umar, M. Rahman, S. aad, M. Salleh, M. Oyama, Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature, Appl. Surf. Sci., 270 (2013) 109-114. https://doi.org/10.1016/j.apsusc.2012.12.128
  38. W. Liao, J. Yang, H. Zhou, M. Murugananthan ,Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants, Electrochim. Acta, 136 (2014) 310-317. https://doi.org/10.1016/j.electacta.2014.05.091
  39. D. Chen, Y. Cheng, N. Zhou , P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng , R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review, J. Clean. Prod., 268 (2020) 121725.