DOI QR코드

DOI QR Code

Seasonal Variation of Carbon Dioxide Flux between Soil Surface Layer and Atmosphere in Unvegetated Tidal Flat : Beolgyo Tidal Flat

비식생 갯벌 표층과 대기의 이산화탄소 플럭스 계절 변동 분석: 벌교 갯벌

  • Kyeong-deok Park (Institute of Environmental Geosciences, Pukyong National University) ;
  • Dong-hwan Kang (Institute of Environmental Geosciences, Pukyong National University) ;
  • Yoon Hwan So (Institute of Environmental Geosciences, Pukyong National University) ;
  • Won Gi Jo (Greenhouse Gas Inventory and Research Center of Korea) ;
  • Byung-Woo Kim (K-water Institute, Korea Water Resources Corporation)
  • 박경덕 (부경대학교 지질환경연구소) ;
  • 강동환 (부경대학교 지질환경연구소) ;
  • 소윤환 (부경대학교 지질환경연구소) ;
  • 조원기 (온실가스종합정보센터) ;
  • 김병우 (한국수자원공사 K-water연구원)
  • Received : 2023.02.20
  • Accepted : 2023.03.21
  • Published : 2023.04.30

Abstract

In this study, we analyzed seasonal variations in carbon dioxide fluxes, concentrations, and soil temperatures over three years in unvegetated tidal flats in the Beolgyo area. We also investigated the correlations between carbon dioxide fluxes and influencing factors. The average carbon dioxide flux was positive in summer and autumn but negative in winter and spring. A positive correlation was observed between carbon dioxide flux and soil temperature in spring whereas a negative correlation was noted in summer. In summer and autumn, as the soil temperature increased, the carbon dioxide flux decreased. In contrast, in spring and winter, as the soil temperature decreased, the carbon dioxide flux increased. Overall, this study reveals the significant influence of soil temperatures on carbon dioxide fluxes between the surface layer of the tidal flat and atmosphere.

Keywords

Acknowledgement

본 논문은 "2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업 (2020R1I1A1A01073860)" 및 "2021년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터 사업(2021R1A6C101A415)"의 지원을 받아 수행되었습니다.

References

  1. Davidson, N. C., Finlayson, C. M., 2019, Updating global coastal wetland areas presented in Davidson and Finlayson (2018), Mar. Freshw. Res., 70, 1195-1200. https://doi.org/10.1071/MF19010
  2. Decho, A. W., 2000, Microbial biofilms in intertidal systems: an overview, Cont. Shelf Res., 20, 1257-1273. https://doi.org/10.1016/S0278-4343(00)00022-4
  3. Field, C. B., Ball, J. T., Berry, J. A., 1989, Photosynthesis, principles and filed techniques. In Plant physiological ecology, field methods and instrumentation (Pearcy, R. W., Ehleringer, J., Mooney, H. A., Rundel, P. W. eds.), Chapmand and Hall, New York, 209-253.
  4. Kang, D. H., Kwon, B. H., Kim, P. G., 2010, CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay, J. Environ. Sci., 19(2), 217-227. https://doi.org/10.5322/JES.2010.19.2.217
  5. Kang, D. H., Kwon, B. H., Kim, P. S., 2014, Variation analysis of CO2 concentrations at sunset before and after of summer season at the foreshore, J. Environ. Sci., 23(3), 399-407. https://doi.org/10.5322/JESI.2014.23.3.399
  6. Kang, D. H., Kwon, B. H., Yu, H. S., Kim, P. S., Kim, K. H., 2011, Seasonal and Spatial Variations of CO2 Fluxes Between Surface and Atmosphere in Foreshore, Paddy Field and Woods Sites, J. Environ. Sci., 20(8), 963-975. https://doi.org/10.5322/JES.2011.20.8.963
  7. Kang, D. H., So, Y. H., Kwon, B. H., Kim, P. S., 2019, Sensitivity analysis (Q10) of carbon dioxide flux with soil temperature in the Grassplot, J. Environ. Sci., 28(9), 785-795. https://doi.org/10.5322/JESI.2019.28.9.785
  8. Kim, P. S., Kwon, B. H., Kang, D. H., 2014, Response of soil CO2 fluxes to seasonal variations in a Grassplot, 2014, J. Environ. Sci., 23(6), 1131-1142. https://doi.org/10.5322/JESI.2014.23.6.1131
  9. Koh, C. H., 2001, Mudflats in Korea - Korean tidal flat: Environment, biology and human, Seoul National University Publishing & Cultural Center, Seoul, Korea, 1073.
  10. Lee, J. M., Kwon, B. O., Kim, B., Noh, J., Hwang, K., Ryu, J., Park, J., Hong, S., Khim, J. S., 2019, Natural and anthropogenic signatures on sedimentary organic matters across varying intertidal habitats in the Korean waters, Environ. Int., 133, 105166.
  11. Lin, W. J., Chiu, M. C., Lin, C. W., Lin, H. J., 2021, Effects of sediment characteristics on carbon dioxide fluxes based on interacting factors in unvegetated tidal flats, Front. Mar. Sci., 8, 670180.
  12. Lin, W. J., Wu, J., Lin, H. J., 2020, Contribution of unvegetated tidal flats to coastal carbon flux, Glob. Change Biol., 26, 3443-3454. https://doi.org/10.1111/gcb.15107
  13. Maclntyre, H. L., Geider, R. J., Miller, D. C., 1996, Microphytobenthos; The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production, Estuaries, 19, 186-201. https://doi.org/10.2307/1352224
  14. Migne, A., Davoult, D., Spilmont, N., Ouissea, V., Boucherd, G., 2016, Spatial and temporal variability of CO2 fluxes at the sediment-air interface in a tidal flat of a temperate lagoon (Arcachon Bay, France), J. Sea Res., 109, 13-19. https://doi.org/10.1016/j.seares.2016.01.003
  15. Migne, A., Ouisse, V., Hubas, C., Davoult, D., 2011, Freshwater seepages and ephemeral macroalgae proliferation in an intertidal bay: II. Effect on benthic biomass and metabolism, Estuar. Coast Shelf Sci., 92, 161-168. https://doi.org/10.1016/j.ecss.2010.12.023
  16. Montes-Hugo, M. A., Alvarez-Borrego, S., 2003, Spatial and temporal variation of photosynthetic parameters of phytoplankton in a subtropical coastal lagoon, Estuarine, Coastal and Shelf Sci., 56, 517-525. https://doi.org/10.1016/S0272-7714(02)00202-0
  17. Murray, N. J., Phinn, S. R., Clemens, R. S., Roelfsema, C. M., Fuller, R. A., 2012, Continental scale mapping of tidal flats across East Asia using the landsat archive, Remote Sens., 4, 3417-3426. https://doi.org/10.3390/rs4113417
  18. NIMS, 2022, Report of global atmosphere watch 2021, National Institute of Meteorological Sciences, 330.
  19. So, Y. H., Kang, D. H., Kwon, B. H., Kim, B. S., 2019, Seasonal variations of CO2 concentration and flux in vegetation and non-vegetation environments on the Muan tidal flat of Hampyong Bay, J. Wet. Res., 21, 257-266. https://doi.org/10.17663/JWR.2019.21.4.257
  20. Yu, X., Ye, S., Olsson, L., Wei, M., Krauss, K. W., Brix, H., 2018, Ecosystem respiration in coastal tidal flats can be modelled from air temperature, plant biomass and inundation regime, Biogeosci. Discuss, 1-26.
  21. Zhang, S., Wang, L., Hu, J., Zhang, W., Fu, X., Le, Y., Jin, F., 2011, Organic carbon accumulation capability of thw typical tidal wetland soils in Chongming Dongtan, China, J. Environ. Sci., 23(1), 87-94. https://doi.org/10.1016/S1001-0742(10)60377-4