DOI QR코드

DOI QR Code

A Brief Introduction of Current and Future Magnetospheric Missions

  • 투고 : 2022.12.13
  • 심사 : 2023.01.05
  • 발행 : 2023.02.28

초록

In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

키워드

과제정보

This paper is based on my presentation at the third colloquium of Beyond the Moon (BtM, 심우주탐사연구연합회) held at Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST) on September 28, 2021. I thank the organizers of the colloquium and an editor of this journal (Dr. Hae-Dong Kim) for inviting me to the colloquium and this paper, respectively. This work was supported by Korea Astronomy and Space Science Institute under the R&D program (2022-1-850-09) supervised by the Ministry of Science and ICT.

참고문헌

  1. Burch JL, IMAGE mission overview, Space Sci. Rev. 91, 1-14 (2000). https://doi.org/10.1023/A:1005245323115
  2. National Aeronautics and Space Administration, IMAGE Science Center (2023) [Internet], viewed 2023 Feb 16, available from: https://image.gsfc.nasa.gov
  3. Liu ZX, Escoubet CP, Pu Z, Laakso H, Shi JK, et al., The Double Star mission, Ann. Geophys. 23, 2707-2712 (2005). https://doi.org/10.5194/angeo-23-2707-2005
  4. European Space Agency, Double Star (2023) [Internet], viewed 2023 Feb 16, available from: https://sci.esa.int/web/double-star
  5. European Space Agency, Double Star overview (2023) [Internet], viewed 2023 Feb 16, available from: https://www.esa.int/Science_Exploration/Space_Science/Double_Star_overview2
  6. European Space Agency, Double Star (2023) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/double-star/home
  7. McComas DJ, Allegrini F, Baldonado J, Blake B, Brandt PC, et al., The two wide-angle imaging neutral-atom spectrometers (TWINS) NASA mission-of-opportunity, Space Sci. Rev. 142, 157-231 (2009). https://doi.org/10.1007/s11214-008-9467-4
  8. Space Science Data Coordinated Archive, National Aeronautics and Space Administrati on, USA 184 (2023) [Internet], viewed 2023 Feb 16, available from: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2006-027A
  9. Space Science Data Coordinated Archive, National Aeronautics and Space Administrati on, USA 200 (2023) [Internet], viewed 2023 Feb 16, available from: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2008-010A
  10. Stratton JM, Harvey RJ, Heyler GA, Mission overview for the Radiation Belt Storm Probes mission, Space Sci. Rev. 179, 29-57 (2013). https://doi.org/10.1007/s11214-012-9933-x
  11. Johns Hopkins University Applied Physics Laboratory, Van Allen Probes (2023) [Internet], viewed 2023 Feb 16, available from: http://vanallenprobes.jhuapl.edu
  12. Scherbarth M, Smith D, Adler A, Stuart J, Ginet G, AFRL's Demonstration and Science Experiments (DSX) mission, Proceedings of the SPIE 7438, Solar Physics and Space Weather Instrumentation III, San Diego, Ca, 23 Sep 2009.
  13. Air Force Research Laboratory, Demonstration and Science Experiments (DSX) satellite (2023) [Internet], viewed 2023 Feb 16, available from: https://afresearchlab.com/tech nology/space-vehicles/successstories/demonstration-and-science-experiments-dsxsate llite-2/
  14. National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration, Geostationary Operational Environmental Satellites-R Series (2023) [Internet], viewed 2023 Feb 16, available from: https://www.goes-r.gov
  15. National Meteorological Satellite Center, Korea Meteorological Administration, Information/GK2A (2023) [Internet], viewed 2023 Feb 16, available from: https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.intro
  16. Miyashita Y, Shinohara I, Fujimoto M, Hasegawa H, Hosokawa K, et al., A powerful tool for browsing quick-look data in solar-terrestrial physics: "conjunction event finder", Earth Planet. Space. 63, e1-e4 (2011). https://doi.org/10.5047/eps.2011.01.003
  17. Nishida A, The Geotail mission, Geophys. Res. Lett. 21, 2871-2873 (1994). https://doi.org/10.1029/94GL01223
  18. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, GEOTAIL spacecraft (2023) [Internet], viewed 2023 Feb 16, available from: https://www.stp.isas.jaxa.jp/geotail/
  19. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, GEOTAIL magnetosphere tail observation satellite (2023) [Internet], viewed 2023 Feb 16, available from: https://www.isas.jaxa.jp/en/missions/spacecraft/past/geotail.html
  20. Escoubet CP, Schmidt R, Goldstein ML, Cluster - science and mission overview, Space Sci. Rev. 79, 11-32 (1997). https://doi.org/10.1023/A:1004923124586
  21. Escoubet CP, Fehringer M, Goldstein M, Introduction: the Cluster mission, Ann. Geophys. 19, 1197-1200 (2001). https://doi.org/10.5194/angeo-19-1197-2001
  22. European Space Agency, Cluster (2023) [Internet], viewed 2023 Feb 16, available from: https://sci.esa.int/web/cluster
  23. European Space Agency, Cluster (2023) [Internet], viewed 2023 Feb 16, available from: https://www.esa.int/Science_Exploration/Space_Science/Cluster
  24. European Space Agency, Cluster science archive (2023) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/csa/the-mission
  25. Angelopoulos V, The THEMIS mission, Space Sci. Rev. 141, 5-34 (2008). https://doi.org/10.1007/s11214-008-9336-1
  26. Space Sciences Laboratory, University of California, Berkeley, THEMIS (2023) [Internet], viewed 2023 Feb 16, available from: http://themis.ssl.berkeley.edu
  27. Angelopoulos V, The ARTEMIS mission, Space Sci. Rev. 165, 3-25 (2011). https://doi.org/10.1007/s11214-010-9687-2
  28. Space Sciences Laboratory, University of California, Berkeley, ARTEMIS (2023) [Internet], viewed 2023 Feb 16, available from: http://artemis.ssl.berkeley.edu
  29. Burch JL, Moore TE, Torbert RB, Giles BL, Magnetospheric multiscale overview and science objectives, Space Sci. Rev. 199, 5-21 (2016). https://doi.org/10.1007/s11214-015-0164-9
  30. Goddard Space Flight Center, National Aeronautics and Space Administration, MMS (2023) [Internet], viewed 2023 Feb 16, available from: https://mms.gsfc.nasa.gov
  31. Miyoshi Y, Shinohara I, Takashima T, Asamura K, Higashio N, et al., Geospace exploration project ERG, Earth Planets Space. 70, 101 (2018). https://doi.org/10.1186/s40623-018-0862-0
  32. Institute for Space-Earth Environment Research, Nagoya University, ERG Science Center (2023) [Internet], viewed 2023 Feb 16, available from: http://ergsc.isee.nagoya-u.ac.jp
  33. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Exploration of energization and radiation in geospace "ARASE" (ERG) (2023) [Internet], viewed 2023 Feb 16, available from: https://www.isas.jaxa.jp/en/missions/spacecraft/current/erg.html
  34. Walsh BM, Collier MR, Atz E, Billingsley L, Broll JM, et al., The Cusp Plasma Imaging Detector (CuPID) CubeSat observatory: mission overview, J. Geophys. Res. Space Phys. 126, e2020JA029015 (2021). https://doi.org/10.1029/2020JA029015
  35. Boston University, CuPID (2023) [Internet], viewed 2023 Feb 16, available from: https://sites.bu.edu/cupid/
  36. National Aeronautics and Space Administration, CubeSat launch initiative (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/directorates/heo/home/CubeSats_initiative
  37. Spaceflight Now, Secondary payloads launched with Landsat begin commissioning (2021) [Internet], viewed 2023 Feb 16, available from: https://spaceflightnow.com/2021/10/10/secondary-payloads-launched-with-landsat-begin-commissioning/
  38. Funase R, Ikari S, Miyoshi K, Kawabata Y, Nakajima S, et al., Mission to Earth-Moon Lagrange point by a 6U CubeSat: EQUULEUS, IEEE Aerosp. Electron. Syst. Mag. 35, 30-44 (2020). https://doi.org/10.1109/MAES.2019.2955577
  39. The University of Tokyo, EQUULEUS - from Japan to EML2 (2023) [Internet], viewed 2023 Feb 16, available from: https://www.space.t.u-tokyo.ac.jp/equuleus/en/
  40. Space Science Data Coordinated Archive, National Aeronautics and Space Administration, EQUULEUS (2023) [Internet], viewed 2023 Feb 16, available from: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=EQUULEUS
  41. National Aeronautics and Space Administration, Artemis (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/specials/artemis/
  42. National Aeronautics and Space Administration, Artemis program (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/artemisprogram
  43. The University of Tokyo, PHOENIX (2023) [Internet], viewed 2023 Feb 16, available from: https://www.space.t.u-tokyo.ac.jp/equuleus/en/mission/phoenix/
  44. Boston University, Lunar Environment Heliospheric X-ray Imager (2023) [Internet], viewed 2023 Feb 16, available from: https://sites.bu.edu/lexi/
  45. National Aeronautics and Space Administration, Gateway (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/gateway
  46. European Space Agency, Angelic Halo orbit chosen for Humankind's first lunar outpost (2019) [Internet], viewed 2023 Feb 16, available from: https://www.esa.int/Enabling_Support/Operations/Angelic_halo_orbit_chosen_for_humankind_s_first_lunar_outpost
  47. National Aeronautics and Space Administration, HERMES (2023) [Internet], viewed 2023 Feb 16, available from: https://science.nasa.gov/missions/hermes
  48. National Aeronautics and Space Administration, Lunar gateway instruments to improve weather forecasting for Artemis astronauts (2020) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/feature/goddard/2020/mini-weather-stations-on-lunar-gateway-to-study-deep-space-environment
  49. Wang C, Branduardi-Raymond G, Progress of Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission, Chin. J. Space Sci. 38, 657-661 (2018). https://doi.org/10.11728/cjss2018.05.657
  50. Wang C, Branduardi-Raymont G, Escoubet CP, Recent advance in the Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission, Chin. J. Space Sci. 42, 568-573 (2022). https://doi.org/10.11728/cjss2022.04.yg08
  51. European Space Agency, SMILE (2023) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/smile
  52. Mullard Space Science Laboratory, University College London, SMILE (2023) [Internet], viewed 2023 Feb 16, available from: https://www.mssl.ucl.ac.uk/SMILE/
  53. National Space Science Center, Chinese Academy of Sciences, SMILE mission (2023) [Internet], viewed 2023 Feb 16, available from: http://english.cssar.cas.cn/smile/
  54. Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, HelioSwarm (2023) [Internet], viewed 2023 Feb 16, available from: https://eos.unh.edu/helioswarm
  55. National Aeronautics and Space Administration, HelioSwarm (2023) [Internet], viewed 2023 Feb 16, available from: https://science.nasa.gov/missions/helioswarm
  56. STORM mission, STORM (2023) [Internet], viewed 2023 Feb 16, available from: https://thisisatests633718811.wordpress.com/
  57. National Aeronautics and Space Administration, NASA selects proposals for new space environment missions (2020) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/press-release/nasa-selects-proposals-for-new-space-environment-missions
  58. Blum LW, Kepko L, Turner D, Gabrielse C, Jaynes A, et al., The GTOSat CubeSat: scientific objectives and instrumentation, Proceedings of the SPIE 11389, Micro- and Nanotechnology Sensors, Systems, and Applications XII, online conference, 23 Apr 2020.
  59. Goddard Space Flight Center, National Aeronautics and Space Administration, SmallSat Missions at Goddard, GTOSat (2023) [Internet], viewed 2023 Feb 16, available from: https://smallsat.wff.nasa.gov/missions/gtosat.php
  60. SpaceNews, NASA cubesat bumped from rideshare launch because of orbital debris mitigation concerns (2022) [Internet], viewed 2023 Feb 16, available from: https://spacenews.com/nasa-cubesat-bumped-from-rideshare-launch-because-of-orbitaldebris-mitigation-concerns/
  61. Ezoe Y, Funase R, Nagata H, Miyoshi Y, Kasahara S, et al., GEO-X (GEOspace X-ray imager), Proceedings of the SPIE 11444, Space Telescopes and Instrumentation 2020:Ultraviolet to Gamma Ray, online conference, 13 Dec 2020.
  62. Ezoe Y, Grant-in-aid for specially promoted research (2021-24): X-ray imaging of the Earth's magnetosphere: revealing global behavior of the magnetosphere (2023) [Internet], viewed 2023 Feb 16, available from: https://tokusui-geox.jp/en/
  63. Retino A, Khotyaintsev Y, Le Contel O, Marcucci MF, Plaschke F, et al., Particle energization in space plasmas: towards a multi-point, multi-scale plasma observatory, Exp. Astron. 54, 427-471 (2022). https://doi.org/10.1007/s10686-021-09797-7
  64. European Space Agency, Voyage 2050, Long-term planning of the ESA science programme (2023) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/voyage-2050/home
  65. European Space Agency, Update on the F2 and M7 mission opportunity (2022) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/call-for-missions2021/update-on-the-f2-and-m7-mission-opportunity
  66. Kepko L, Magnetospheric constellation: leveraging space 2.0 for big science, IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, 22-27 Jul 2018.
  67. Carlisle CC, Le G, Slavin JA, VanSant JT, Webb EH, Space technology 5-technology validation update, in 2006 IEEE Aerospace Conference, Big Sky, MT, 4-11 Mar 2006.
  68. Jet Propulsion Laboratory, National Aeronautics and Space Administration, and California Institute of Technology, Space Technology 5 (2006) [Internet], viewed 2023 Feb 16, available from: https://www.jpl.nasa.gov/nmp/st5/index.php
  69. Dai L, Wang C, Cai Z, Gonzalez W, Hesse M, et al., AME: a cross-scale constellation of CubeSats to explore magnetic reconnection in the solar-terrestrial relation, Front. Phys. 8, 89 (2020). https://doi.org/10.3389/fphy.2020.00089
  70. Wu J, Yang X, Dai L, Progress of radiation belt exploration by a constellation of small satellites TGCSS/SGRB, COSPAR, Chin. J. Space Sci. 42, 836-840 (2022). https://doi.org/10.11728/cjss2022.04.yg18
  71. Committee on Space Research (COSPAR), The COSPAR task group on establishing a constellation of small satellites (TGCSS) (2023) [Internet], viewed 2023 Feb 16, available from: https://cosparhq.cnes.fr/scientific-structure/task-groups/task-group-on-establishing-a-constellation-of-small-satellites-tgcss/
  72. Solomon SC, McNutt RL Jr, Gold RE, Domingue DL, MESSENGER mission overview, Space Sci. Rev. 131, 3-39 (2007). https://doi.org/10.1007/s11214-007-9247-6
  73. Solomon SC, Anderson BJ, 1 - The MESSENGER mission: science and implementation overview, in Mercury: The View after MESSENGER, eds. Solomon SC, Nittler LR, Anderson BJ (Cambridge University Press, Cambridge, UK, 2018), 1-29.
  74. Johns Hopkins University Applied Physics Laboratory, MESSENGER (2016) [Internet], viewed 2023 Feb 16, available from: https://messenger.jhuapl.edu
  75. Johns Hopkins University Applied Physics Laboratory, MESSENGER (2023) [Internet], viewed 2023 Feb 16, available from: https://civspace.jhuapl.edu/destinations/missions/messenger
  76. Matson DL, Spilker LJ, Lebreton JP, The Cassini/Huygens mission to the Saturnian system, Space Sci. Rev. 104, 1-58 (2002). https://doi.org/10.1023/A:1023609211620
  77. NASA's Jet Propulsion Laboratory, National Aeronautics and Space Administration, Cassini (2023) [Internet], viewed 2023 Feb 16, available from: https://solarsystem.nasa.gov/missions/cassini/overview/
  78. European Space Agency, Cassini-Huygens (2023) [Internet], viewed 2023 Feb 16, available from: https://sci.esa.int/web/cassini-huygens
  79. European Space Agency, Cassini-Huygens (2023) [Internet], viewed 2023 Feb 16, available from: https://www.esa.int/Science_Exploration/Space_Science/Cassini-Huygens
  80. Benkhoff J, Murakami G, Baumjohann W, Besse S, Bunce E, et al., BepiColombo - mission overview and science goals, Space Sci. Rev. 217, 90 (2021). https://doi.org/10.1007/s11214-021-00861-4
  81. European Space Agency, BepiColombo (2023) [Internet], viewed 2023 Feb 16, available from: https://sci.esa.int/web/bepicolombo
  82. European Space Agency, BepiColombo (2023) [Internet], viewed 2023 Feb 16, available from: https://www.esa.int/Science_Exploration/Space_Science/BepiColombo
  83. European Space Agency, BepiColombo (2023) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/bepicolombo/home
  84. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Mercury Magnetospheric Orbiter Mio (2023) [Internet], viewed 2023 Feb 16, available from: https://mio.isas.jaxa.jp/en/
  85. Bolton SJ, Lunine J, Stevenson D, Connerney JEP, Levin S, et al., The Juno mission, Space Sci. Rev. 213, 5-37 (2017). https://doi.org/10.1007/s11214-017-0429-6
  86. Southwest Research Institute, Mission Juno (2023) [Internet], viewed 2023 Feb 16, available from: https://www.missionjuno.swri.edu
  87. National Aeronautics and Space Administration, Juno (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/mission_pages/juno/main/index.html
  88. Jet Propulsion Laboratory, National Aeronautics and Space Administration, and California Institute of Technology, Juno (2023) [Internet], viewed 2023 Feb 16, available from: https://www.jpl.nasa.gov/missions/juno
  89. Grasset O, Dougherty MK, Coustenis A, Bunce EJ, Erd C, et al., JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system, Planet. Space Sci. 78, 1-21 (2013). https://doi.org/10.1016/j.pss.2012.12.002
  90. European Space Agency, JUICE (2023) [Internet], viewed 2023 Feb 16, available from: https://sci.esa.int/web/juice
  91. European Space Agency, JUICE (2023) [Internet], viewed 2023 Feb 16, available from: https://www.esa.int/Science_Exploration/Space_Science/Juice
  92. European Space Agency, JUICE (2023) [Internet], viewed 2023 Feb 16, available from: https://www.cosmos.esa.int/web/juice
  93. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, JUICE (2023) [Internet], viewed 2023 Feb 16, available from: https://juice.stp.isas.jaxa.jp/home/
  94. Bayer T, Bittner M, Buffington B, Dubos G, Ferguson E, et al., Europa Clipper mission: preliminary design report, in 2019 IEEE Aerospace Conference, Big Sky, MT, 2 Mar 2019.
  95. National Aeronautics and Space Administration, Europa (2023) [Internet], viewed 2023 Feb 16, available from: https://europa.nasa.gov
  96. National Aeronautics and Space Administration, Europa Clipper (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nasa.gov/europa
  97. Space Science Data Coordinated Archive, National Aeronautics and Space Administration, Europa Clipper (2023) [Internet], viewed 2023 Feb 16, available from: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=EUROPA-CL
  98. Korth H, Pappalardo RT, Senske DA, Kempf S, Kivelson MG, et al., Investigations of moonmagnetosphere interactions by the Europa Clipper mission, EPSC-DPS Joint Meeting 2019, EPSC Abstracts 13, EPSC-DPS2019-366-1, Geneva, Switzerland, 15-20 Sep 2019.
  99. National Academies of Sciences, Engineering, and Medicine, Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (The National Academies Press, Washington, DC, 2022).
  100. National Academies of Sciences, Engineering, and Medicine, Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (2022) [Internet], viewed 2023 Feb 16, available from: https://nap.nationalacademies.org/resource/26522/interactive/
  101. Cohen IJ, Beddingfield C, Chancia R, DiBraccio G, Hedman M, et al., The case for a new frontiers-class Uranus orbiter: system science at an underexplored and unique world with a mid-scale mission, Planet. Sci. J. 3, 58 (2022). https://doi.org/10.3847/PSJ/ac5113
  102. National Academies of Sciences, Engineering, and Medicine, Planetary Science and Astrobiology Decadal Survey 2023-2032 (2023) [Internet], viewed 2023 Feb 16, available from: https://www.nationalacademies.org/our-work/planetary-science-and-astrobiology-decadal-survey-2023-2032
  103. Rymer AM, Runyon KD, Clyde B, Nunez JI, Nikoukar R, et al., Neptune Odyssey: a flagship concept for the exploration of the Neptune-Triton system, Planet. Sci. J. 2, 184 (2021). https://doi.org/10.3847/PSJ/abf654
  104. Johns Hopkins University Applied Physics Laboratory, Neptune Odyssey (2020) [Internet], viewed 2022 Dec 29, available from: http://neptuneodyssey.jhuapl.edu
  105. Maggiolo R, Andre N, Hasegawa H, Welling DT, Zhang Y, et al., Magnetospheres in the solar system, vol. 259, in Geophysical Monograph Series (American Geophysical Union, Washington, DC, 2021).
  106. Branduardi-Raymont G, Berthomier M, Bogdanova YV, Carter JA, Collier M, et al., Exploring solar-terrestrial interactions via multiple imaging observers, Exp. Astron. 54, 361-390 (2022). https://doi.org/10.1007/s10686-021-09784-y
  107. Borovsky JE, Delzanno GL, Active experiments in space: the future, Front. Astron. Space Sci. 6, 31 (2019). https://doi.org/10.3389/fspas.2019.00031
  108. Delzanno GL, Borovsky JE, Mishin E, Editorial: active experiments in space: past, present, and future, Front. Astron. Space Sci. 7, 5 (2020). https://doi.org/10.3389/fspas.2020.00005
  109. National Academies of Sciences, Engineering, and Medicine, Powering Science: NASA's Large Strategic Science Missions (The National Academies Press, Washington, DC, 2017).
  110. National Academies of Sciences, Engineering, and Medicine, Achieving Science with CubeSats: Thinking Inside the Box (The National Academies Press, Washington, DC, 2016).
  111. Millan RM, von Steiger R, Ariel M, Bartalev S, Borgeaud M, et al., Small satellites for space science: a COSPAR scientific roadmap, Adv. Space Res. 64, 1466-1517 (2019). https://doi.org/10.1016/j.asr.2019.07.035
  112. Liewer PC, Klesh AT, Lo MW, Murphy N, Staehle RL, et al., A fractionated space weather base at L5 using CubeSats and solar sails, in Advances in Solar Sailing, ed. MacDonald M (Springer, Berlin, 2014), 269-288.
  113. Caspi A, Barthelemy M, Bussy-Virat CD, Cohen IJ, DeForest CE, et al., Small satellite mission concepts for space weather research and as pathfinders for operations, Space Weather 20, e2020SW002554 (2022). https://doi.org/10.1029/2020SW002554