과제정보
The work was supported by Huaian Health and Health Research Project (approval number: HAWJ202108) and Science and Technology Development Foundation of Nanjing Medical University (approval number: NMUB20210135).
참고문헌
- Uhle F, Lichtenstern C, Brenner T, Weigand MA (2015) [Pathophysiology of sepsis]. Anasthesiol Intensivmed Notfallmed Schmerzther 50:114-122. https://doi.org/10.1055/s-0041-100391
- Napolitano LM (2018) Sepsis 2018: defnitions and guideline changes. Surg Infect (Larchmt) 19:117-125. https://doi.org/10.1089/sur.2017.278
- Aziz M, Ode Y, Zhou M, Ochani M, Holodick NE, Rothstein TL, Wang P (2018) B-1a cells protect mice from sepsis-induced acute lung injury. Mol Med 24:26. https://doi.org/10.1186/s10020-018-0029-2
- Li R, Ren T, Zeng J (2019) Mitochondrial coenzyme Q protects sepsis-induced acute lung injury by activating PI3K/Akt/GSK-3β/mTOR pathway in rats. Biomed Res Int 2019:5240898. https://doi.org/10.1155/2019/5240898
- Park I, Kim M, Choe K, Song E, Seo H, Hwang Y, Ahn J, Lee SH, Lee JH, Jo YH, Kim K, Koh GY, Kim P (2019) Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J 53:1800786. https://doi.org/10.1183/13993003.00786-2018
- Ling L, Tong J, Zeng L (2020) [Paeoniforin improves Acute Lung Injury in Sepsis by activating Nrf2/Keap1 signaling pathway]. Sichuan Da Xue Xue Bao Yi Xue Ban 51:664-669. https://doi.org/10.12182/20200960201
- Xu Q, Wang J (2020) IGFBP7 aggravates sepsis-induced acute lung injury by activating the ERK1/2 pathway. Folia Histochem Cytobiol 58:247-254. https://doi.org/10.5603/FHC.a2020.0028
- Martin TR, Nakamura M, Matute-Bello G (2003) The role of apoptosis in acute lung injury. Crit Care Med 31:S184-S188. https://doi.org/10.1097/01.Ccm.0000057841.33876.B1
- Parsons PE, Eisner MD, Thompson BT, Matthay MA, Ancukiewicz M, Bernard GR, Wheeler AP (2005) Lower tidal volume ventilation and plasma cytokine markers of infammation in patients with acute lung injury. Crit Care Med 33:1-6. https://doi.org/10.1097/01.ccm.0000149854.61192.dc
- Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A (1995) Infammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108:1303-1314. https://doi.org/10.1378/chest.108.5.1303
- Patop IL, Wust S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38:e100836. https://doi.org/10.15252/embj.2018100836
- Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, Shu Y (2019) CircRNAs in cancer metabolism: a review. J Hematol Oncol 12:90. https://doi.org/10.1186/s13045-019-0776-8
- Altesha MA, Ni T, Khan A, Liu K, Zheng X (2019) Circular RNA in cardiovascular disease. J Cell Physiol 234:5588-5600. https://doi.org/10.1002/jcp.27384
- Cao Q, Guo Z, Du S, Ling H, Song C (2020) Circular RNAs in the pathogenesis of atherosclerosis. Life Sci 255:117837. https://doi.org/10.1016/j.lfs.2020.117837
- Beltran-Garcia J, Osca-Verdegal R, Nacher-Sendra E, Pallardo FV, Garcia-Gimenez JL (2020) Circular RNAs in sepsis: biogenesis, function, and clinical signifcance. Cells 9:1544. https://doi.org/10.3390/cells9061544
- Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98:87-97. https://doi.org/10.1002/jnr.24356
- Yuan C, Gu J, Wu J, Yin J, Zhang M, Miao H, Li J (2020) Circular RNA expression in the lungs of a mouse model of sepsis induced by cecal ligation and puncture. Heliyon 6:e04532. https://doi.org/10.1016/j.heliyon.2020.e04532
- Yang CL, Yang WK, He ZH, Guo JH, Yang XG, Li HB (2021) Quietness of circular RNA circ_0054633 alleviates the infammation and proliferation in lipopolysaccharides-induced acute lung injury model through NF-κB signaling pathway. Gene 766:145153. https://doi.org/10.1016/j.gene.2020.145153
- Bao X, Zhang Q, Liu N, Zhuang S, Li Z, Meng Q, Sun H, Bai J, Zhou X, Tang L (2019) Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury. J Cell Mol Med 23:7111-7115. https://doi.org/10.1111/jcmm.14577
- Ma K, Wang W, Gao C, He J (2021) The role of circTMOD3 in regulating LPS-induced acute infammation and injury in human lung fbroblast WI-38 cells. Exp Lung Res 47:311-322. https://doi.org/10.1080/01902148.2021.1940376
- Zou Z, Wang Q, Zhou M, Li W, Zheng Y, Li F, Zheng S, He Z (2020) Protective efects of P2X7R antagonist in sepsis-induced acute lung injury in mice via regulation of circ_0001679 and circ_0001212 and downstream pln, Cdh2, and Nprl3 expression. J Gene Med 22:e3261. https://doi.org/10.1002/jgm.3261
- Chen LL (2020) The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21:475-490. https://doi.org/10.1038/s41580-020-0243-y
- Zhu J, Zhang X, Gao W, Hu H, Wang X, Hao D (2019) lncRNA/circRNA-miRNA-mRNA ceRNA network in lumbar intervertebral disc degeneration. Mol Med Rep 20:3160-3174. https://doi.org/10.3892/mmr.2019.10569
- Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs' action through miRNA editing. Int J Mol Sci 20:6249. https://doi.org/10.3390/ijms20246249
- Jiang WY, Ren J, Zhang XH, Lu ZL, Feng HJ, Yao XL, Li DH, Xiong R, Fan T, Geng Q (2020) CircC3P1 attenuated pro-infammatory cytokine production and cell apoptosis in acute lung injury induced by sepsis through modulating miR-21. J Cell Mol Med 24:11221-11229. https://doi.org/10.1111/jcmm.15685
- Zhao D, Wang C, Liu X, Liu N, Zhuang S, Zhang Q, Bao X, Xu S, Zhou X, Meng Q, Li S, Tang L (2021) CircN4bp1 facilitates sepsis-induced acute respiratory distress syndrome through mediating macrophage polarization via the miR-138-5p/EZH2 axis. Mediators Infamm 2021:7858746. https://doi.org/10.1155/2021/7858746
- Lin Q, Liang Q, Qin C, Li Y (2021) CircANKRD36 Knockdown suppressed cell viability and migration of LPS-stimulated RAW264.7 cells by sponging MiR-330. Infammation 44:2044-2053. https://doi.org/10.1007/s10753-021-01480-5
- Ji Q, Sun Z, Yang Z, Zhang W, Ren Y, Chen W, Yao M, Nie S (2021) Protective efect of ginsenoside Rg1 on LPS-induced apoptosis of lung epithelial cells. Mol Immunol 136:168-174. https://doi.org/10.1016/j.molimm.2018.11.003
- Lipner MB, Peng XL, Jin C, Xu Y, Gao Y, East MP, Rashid NU, Moftt RA, Herrera Loeza SG, Morrison AB, Golitz BT, Vaziri C, Graves LM, Johnson GL, Yeh JJ (2020) Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. JCI Insight 5:2. https://doi.org/10.1172/jci.insight.129905
- Sun H, Hu H, Xu X, Fang M, Tao T, Liang Z (2021) Protective efect of dexmedetomidine in cecal ligation perforation-induced acute lung injury through HMGB1/RAGE pathway regulation and pyroptosis activation. Bioengineered 12:10608-10623. https://doi.org/10.1080/21655979.2021.2000723
- Zhang J, Zheng Y, Wang Y, Wang J, Sang A, Song X, Li X (2022) YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis. Front Immunol 13:884362. https://doi.org/10.3389/fmmu.2022.884362
- Qiu N, Xu X, He Y (2020) LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm Med 20:49. https://doi.org/10.1186/s12890-020-1084-3
- Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM (2011) An ofcial american thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44:725-738. https://doi.org/10.1165/rcmb.2009-0210ST
- Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, Horiuchi M, Kato K, Imoto Y, Iwata M, Mimura S, Ito T, Tamura K, Kato Y (2020) Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplifcation, and a rapid antigen test to diagnose COVID-19. J Clin Microbiol 58:e01438-20. https://doi.org/10.1128/jcm.01438-20
- Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92-D97. https://doi.org/10.1093/nar/gkt1248
- Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often fanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20. https://doi.org/10.1016/j.cell.2004.12.035
- Ye Z, Liu X, Yang Y, Zhang X, Yu T, Li S, Feng Y, Luo G (2018) The diferential expression of novel circular RNAs in an acute lung injury rat model caused by smoke inhalation. J Physiol Biochem 74:25-33. https://doi.org/10.1007/s13105-017-0598-5
- Ren Y, Li L, Wang M, Yang Z, Sun Z, Zhang W, Cao L, Nie S (2022) Knockdown of circRNA paralemmin 2 ameliorates lipopolysaccharide-induced murine lung epithelial cell Injury by sponging mir-330-5p to reduce ROCK2 expression. Immunol Invest 51:1707-1724. https://doi.org/10.1080/08820139.2022.2027961
- Cheng N, Liang Y, Du X, Ye RD (2018) Serum amyloid A promotes LPS clearance and suppresses LPS-induced infammation and tissue injury. EMBO Rep 19:e45517. https://doi.org/10.15252/embr.201745517
- Chang Y, Yan W, Sun C, Liu Q, Wang J, Wang M (2017) Mir-145-5p inhibits epithelial-mesenchymal transition via the JNK signaling pathway by targeting MAP3K1 in non-small cell lung cancer cells. Oncol Lett 14:6923-6928. https://doi.org/10.3892/ol.2017.7092
- Pham TT, Angus SP, Johnson GL (2013) MAP3K1: genomic alterations in Cancer and function in promoting cell survival or apoptosis. Genes Cancer 4:419-426. https://doi.org/10.1177/1947601913513950
- Parker A, Cross SH, Jackson IJ, Hardisty-Hughes R, Morse S, Nicholson G, Coghill E, Bowl MR, Brown SD (2015) The goya mouse mutant reveals distinct newly identifed roles for MAP3K1 in the development and survival of cochlear sensory hair cells. Dis Model Mech 8:1555-1568. https://doi.org/10.1242/dmm.023176
- Hui Z, Jie H, Fan GH (2021) Expression of DUSP12 reduces lung vascular endothelial cell damage in a murine model of lipopolysaccharide-induced acute lung injury via the apoptosis signal-regulating kinase 1 (ASK1)-Jun N-Terminal kinase activation (JNK) pathway. Med Sci Monit 27:e930429. https://doi.org/10.12659/msm.930429
- Wang WB, Li JT, Hui Y, Shi J, Wang XY, Yan SG (2022) Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway. Chin Med 17:19. https://doi.org/10.1186/s13020-021-00562-8
- Chen Q, Shao X, He Y, Lu E, Zhu L, Tang W (2021) Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol Pharm Bull 44:1536-1547. https://doi.org/10.1248/bpb.b21-00457
- Baradaran Rahimi V, Rakhshandeh H, Raucci F, Buono B, Shirazinia R, Samzadeh Kermani A, Maione F, Mascolo N, Askari VR (2019) Anti-infammatory and anti-oxidant activity of Portulaca oleracea extract on LPS-induced rat lung injury. Molecules 24:139. https://doi.org/10.3390/molecules24010139
- Sakhatskyy P, Wang Z, Borgas D, Lomas-Neira J, Chen Y, Ayala A, Rounds S, Lu Q (2017) Double-hit mouse model of cigarette smoke priming for acute lung injury. Am J Physiol Lung Cell Mol Physiol 312:L56. https://doi.org/10.1152/ajplung.00436.2016
- Mu Q, Zhang C, Li R, Guo Z (2022) CircPalm2 knockdown alleviates LPS-evoked pulmonary microvascular endothelial cell apoptosis and infammation via miR-450b-5p/ROCK1 axis. Int Immunopharmacol 113:109199. https://doi.org/10.1016/j.intimp.2022.109199
- Tay Y, Rinn J, Pandolf PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344-352. https://doi.org/10.1038/nature12986
- Gao M, Yu T, Liu D, Shi Y, Yang P, Zhang J, Wang J, Liu Y, Zhang X (2021) Sepsis plasma-derived exosomal mir-1-3p induces endothelial cell dysfunction by targeting SERP1. Clin Sci (Lond) 135:347-365. https://doi.org/10.1042/cs20200573
- Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, Wang W, Ma Z, Shi X (2021) Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care 25:356. https://doi.org/10.1186/s13054-021-03775-3
- Lin J, Lin Z, Lin L (2021) MiR-490 alleviates sepsis-induced acute lung injury by targeting MRP4 in new-born mice. Acta Biochim Pol 68:151-158. https://doi.org/10.18388/abp.2020_5397
- Tomofuji T, Yoneda T, Machida T, Ekuni D, Azuma T, Kataoka K, Maruyama T, Morita M (2016) MicroRNAs as serum biomarkers for periodontitis. J Clin Periodontol 43:418-425. https://doi.org/10.1111/jcpe.12536
- Yang B, Gao X, Sun Y, Zhao J, Chen J, Gao L, Zhao L, Li Y (2020) Dihydroartemisinin alleviates high glucose-induced vascular smooth muscle cells proliferation and infammation by depressing the miR-376b-3p/KLF15 pathway. Biochem Biophys Res Commun 530:574-580. https://doi.org/10.1016/j.bbrc.2020.07.095
- Morrell ED, O'Mahony DS, Glavan BJ, Harju-Baker S, Nguyen C, Gunderson S, Abrahamson A, Radella F 2, Rona G, Black RA, Wurfel MM (2018) Genetic variation in MAP3K1 associates with ventilator-free days in acute respiratory distress syndrome. Am J Respir Cell Mol Biol 58:117-125. https://doi.org/10.1165/rcmb.2017-0030OC
- Zhao Y, Zou M, Sun Y, Zhang K, Peng X (2019) Gga-miR-21 modulates Mycoplasma gallisepticum (HS strain)-Induced infammation via targeting MAP3K1 and activating MAPKs and NF-κB pathways. Vet Microbiol 237:108407. https://doi.org/10.1016/j.vetmic.2019.108407
- Li G, Qi W, Li X, Zhao J, Luo M, Chen J (2021) Recent advances in c-Jun N-Terminal kinase (JNK) inhibitors. Curr Med Chem 28:607-627. https://doi.org/10.2174/0929867327666200210144114
- Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
- Lou L, Hu D, Chen S, Wang S, Xu Y, Huang Y, Shi Y, Zhang H (2019) Protective role of JNK inhibitor SP600125 in sepsis-induced acute lung injury. Int J Clin Exp Pathol 12:528-538
- Du J, Wang G, Luo H, Liu N, Xie J (2021) JNK-IN-8 treatment alleviates lipopolysaccharide-induced acute lung injury via suppression of infammation and oxidative stress regulated by JNK/NF-κB signaling. Mol Med Rep 23:150. https://doi.org/10.3892/mmr.2020.11789