DOI QR코드

DOI QR Code

Investigation of Oxygen Functional Group Movement in Graphene Oxide Devices

그래핀 산화물 소자에서의 산소 작용기 이동 연구

  • Received : 2023.02.27
  • Accepted : 2023.03.22
  • Published : 2023.03.31

Abstract

In this study, a device was fabricated to check the possibility of a memory device by controlling the oxygen functional groups in graphene oxide formed with a 45-second exposure time. We discovered that graphene oxide can be formed using the ultraviolet (UV) light treatment method with different exposure times. Moreover, Raman spectroscopy measurement revealed that the oxygen functional groups can be moved by controlling the voltage. We further studied the change in the local graphene oxide region, which was found to be related to the modulation of the electrical properties of the device. Therefore, the fabricated graphene oxide device can be used as a wettability switching membrane and graphene-based ion transport device.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었다(No. 2022R1A2C3004135).

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306, No. 5696, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
  2. M. K. Filippidou, E. Tegou, V. Tsouti, and S. Chatzandroulis, "A flexible strain sensor made of graphene nanoplatelets/polydimethylsiloxane nanocomposite", Microelectron. Eng., Vol. 142, pp. 7-11, 2015. https://doi.org/10.1016/j.mee.2015.06.007
  3. J. Wang, L. Sun, M. Zou, W. Gao, C. Liu, L. Shang, Z. Gu, and Y. Zhao, "Bioinspired shape-memory graphene film with tunable wettability", Sci. Adv., Vol. 3, No. 6, p. e1700004, 2017.
  4. E. W. Hill, A. K. Geim, K. Novoselov, F. Schedin, and P. Blake "Graphene spin valve devices", IEEE Trans. Magn., Vol. 42, No. 10, pp. 2694-2696. 2006. https://doi.org/10.1109/TMAG.2006.878852
  5. J. Wintterlin, M-L. Bocquet, "Graphene on metal surfaces", Surf. Sci., Vol. 603, No. 10-12, pp. 1841-1852, 2009. https://doi.org/10.1016/j.susc.2008.08.037
  6. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, "A graphene-based broadband optical modulator", Nature, Vol. 474, No. 7349, pp. 64-67, 2011. https://doi.org/10.1038/nature10067
  7. M. E. Abbassi, S. Sangtarash, X. Liu, M. L. Perrin, O. Braun, C. Lambert, H. S. J. van der Zant, S. Yitzchaik, S. Decurtins, S.-X. Liu, H. Sadeghi, and M. Calame , "Robust graphene-based molecular devices", Nat. Nanotechnol., Vol. 14, No. 10, pp. 957-961, 2019. https://doi.org/10.1038/s41565-019-0533-8
  8. J. Son, J. Kwon, S. P. Kim, Y. Lv, J. Yu, J.-Y. Lee, H. Ryu, K. Watanabe, T. Taniguchi, R. Garrido-Menacho, N. Mason, E. Ertekin, P. Y. Huang, G.-H. Lee, and A. M. van der Zande "Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures", Nat. Commun., Vol. 9, No. 1, p. 3988, 2018.
  9. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored assembly of carbon nanotubes and graphene", Adv. Funct. Mater., Vol. 21. No. 8, pp. 1338-1354, 2011 https://doi.org/10.1002/adfm.201002048
  10. D. H. Lee, C. K. Kim, J.-H. Lee, H.-J. Chung, and B. H. Park, "Fabricating in-plane transistor and memory using atomic force microscope lithography towards graphene system on chip", Carbon, Vol. 96, pp. 223-228, 2016. https://doi.org/10.1016/j.carbon.2015.09.052
  11. J. I. Paredes, S. Villar-Rodil, A. M. Alonso, and J. M. D. Tascon, "Graphene Oxide Dispersions in Organic Solvents", Langmuir, Vol. 24, pp. 10560-10564, 2008. https://doi.org/10.1021/la801744a
  12. M. M. Haidari, H. Kim, J. H. Kim, M. Park, H. Lee, and J. S. Choi, "Doping effect in graphene-graphene oxide interlayer", Sci. Rep., Vol. 10, No. 1, pp. 8258, 2020.
  13. J. H. Kim, M. M. Haidari, J. S. Choi, H. Kim, Y.-J. Yu, and J. Park, "Facile dry surface cleaning of graphene by UV treatment", J. Korean Phys. Soc., Vol. 72, No. 9, pp. 1045-1051, 2018. https://doi.org/10.3938/jkps.72.1045
  14. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transport of largearea graphene films for high-performance transparent conductive electrodes", Nano Lett., Vol. 9, No. 12, pp. 4359-4363, 2009. https://doi.org/10.1021/nl902623y
  15. Y. Mulyana, M. Uenuma, Y. Ishikawa, and Y. Uraoka, "Reversible Oxidation of Graphene Through Ultraviolet/Ozone Treatment and Its Nonthermal Reduction through Ultraviolet Irradiation", J. Phys. Chem. C, Vol. 118, No. 47, pp. 27372-27381, 2014. https://doi.org/10.1021/jp508026g
  16. K. Vijayarangamuthu, S. Ahn, H. Seo, S.-H. Yoon, C.- M. Park, and K.- J. Jeon, "Temporospatial control of graphene wettability", Adv. Mater., Vol. 28, No. 4, pp. 661-667. 2016. https://doi.org/10.1002/adma.201503444
  17. G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultra-thin films of reduced graphene oxide as a transparent and flexible electronic material", Nat. Nanotechnol., Vol. 3, No. 5, pp. 270-274, 2008. https://doi.org/10.1038/nnano.2008.83
  18. T. Ikuno, H. Okamoto, Y. Sugiyama, H. Nakano, F. Yamada, and I. Kamiya, "Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler-Nordheim tunneling", Appl. Phys. Lett., Vol. 99, No. 2, p. 023107, 2011.
  19. Y. You, X. H. Jin, X. Y. Wen, V. Sahajwalla, V. Chen, H. Bustamante, and R. K. Joshi, "Application of graphene oxide membranes for removal of natural organic matter from water", Carbon, Vol. 129, pp. 415-419, 2018. https://doi.org/10.1016/j.carbon.2017.12.032
  20. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, "Active control of all-fibre graphene devices with electrical gating", Nat. Commun., Vol. 6, No. 1, p. 6851, 2015.