DOI QR코드

DOI QR Code

Gas Distribution Mapping and Source Localization: A Mini-Review

  • Taehwan Kim (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Inkyu Park (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2023.03.21
  • 심사 : 2023.03.31
  • 발행 : 2023.03.31

초록

The significance of gas sensors has been emphasized in various industries and applications, owing to the growing significance of environmental, social, and governance (ESG) management in corporate operations. In particular, the monitoring of hazardous gas leakages and detection of fugitive emissions have recently garnered significant attention across several industrial sectors. As industrial workplaces evolve to ensure the safety of their working environments and reduce greenhouse gas emissions, the demand for high-performance gas sensors in industrial sectors dealing with toxic substances is on the rise. However, conventional gas-sensing systems have limitations in monitoring fugitive gas leakages at both critical and subcritical concentrations in complex environments. To overcome these difficulties, recent studies in the field of gas sensors have employed techniques such as mobile robotic olfaction, remote optical sensing, chemical grid sensing, and remote acoustic sensing. This review highlights the significant progress made in various technologies that have enabled accurate and real-time mapping of gas distribution and localization of hazardous gas sources. These recent advancements in gas-sensing technology have shed light on the future role of gas-detection systems in industrial safety.

키워드

참고문헌

  1. P.-S. Murvay and I. Silea, "A survey on gas leak detection and localization techniques", J. Loss Prev. Process Industries, Vol. 25, No. 6, pp. 966-973, 2012. https://doi.org/10.1016/j.jlp.2012.05.010
  2. B. Yang, N. V. Myung, and T.-T. Tran, "1D metal oxide semiconductor materials for chemiresistive gas sensors: A review", Adv. Electron. Mater., Vol. 7, No. 9, p. 2100271, 2021.
  3. J. Burgues, V. Hernandez, A. J. Lilienthal, and S. Marco, "Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors", Sens. Actuators B: Chem., Vol. 304, p. 127309, 2020.
  4. M. Kang, I. Cho, J. Park, J. Jeong, K. Lee, B. Lee, D. D. O. Henriquez, K. Yoon, and I. Park, "High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm", ACS Sens., Vol. 7, No. 2, pp. 430-440, 2022. https://doi.org/10.1021/acssensors.1c01204
  5. I. Cho, Y. C. Sim, M. Cho, Y.-H. Cho, and I. Park, "Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption", ACS Sens., Vol. 5, No. 2, pp. 563-570, 2020. https://doi.org/10.1021/acssensors.9b02487
  6. D. Cho, J. M. Suh, S.-H. Nam, S. Y. Park, M. Park, T. H. Lee, K. S. Choi, J. Lee, C. Ahn, H. W. Jang, Y.-S. Shim, and S. Jeon, "Optically Activated 3D Thin-Shell TiO2 for Super-Sensitive Chemoresistive Responses: Toward Visible Light Activation", Adv. Sci., Vol. 8, No. 3, p. 2001883, 2020.
  7. J. Lee, D. Cho, H. Chen, Y.-S. Shim, J. Park, and S. Jeon, "Proximity-field nanopatterning for high-performance chemical and mechanical sensor applications based on 3D nanostructures", Appl. Phys. Rev., Vol. 9, No. 1, p. 011322, 2022.
  8. J. Titchener, D. Millington-Smith, C. Goldsack, G. Harrison, A. Dunning, X. Ai, and M. Reed, "Single photon Lidar gas imagers for practical and widespread continuous methane monitoring", Appl. Energy, Vol. 306 p. 118086, 2022.
  9. H. Yang, X.-F. Yao, S. Wang, L. Yuan, Y.-C. Ke, and Y.-H. Liu, "Simultaneous determination of gas leakage location and leakage rate based on local temperature gradient", Meas., Vol. 133, pp. 233-240, 2019. https://doi.org/10.1016/j.measurement.2018.10.017
  10. Z. Hu, S. Tariq, and T. Zayed, "A comprehensive review of acoustic based leak localization method in pressurized pipelines", Mech. Syst. Signal Process., Vol. 161, p. 107994, 2021.
  11. S. Li, Y. Wen, P. Li, J. Yang, and L. Yang, "Leak detection and location for gas pipelines using acoustic emission sensors", 2012 IEEE Int. Ultrason. Symp., pp. 957-960, 2012.
  12. V. Asghari, M. H. Kazemi, H.-F. Duan, S.-C. Hsu, and A. Keramat, "Machine learning modeling for spectral transient-based leak detection", Autom. Constr., Vol. 146, p. 104686, 2023
  13. J. Zhang, Z. Lian, Z. Zhou, M. Xiong, M. Lian, and J. Zheng,"Acoustic method of high-pressure natural gas pipelines leakage detection: Numerical and applications", Int. J. Press. Vessel. Piping, Vol. 194, p. 104540, 2021.
  14. F. Ning, Z. Cheng, D. Meng, and J. Wei, "A framework combining acoustic features extraction method and random forest algorithm for gas pipeline leak detection and classification", Appl. Acoust., Vol. 182, p. 108255, 2021.
  15. W. Wang, X. Mao, H. Liang, D. Yang, J. Zhang, and S. Liu, "Experimental research on in-pipe leaks detection of acoustic signature in gas pipelines based on the artificial neural network", Meas., Vol. 183, p. 109875, 2021.
  16. K. Elandalibe, A. Jbari, and A. Bourouhou, "Application of cross-correlation technique for multi leakage detection", Third World Conf. Complex Syst. (WCCS), IEEE, pp. 1-4, 2015.
  17. G. Ping, E. Fernandez-Grande, P. Gerstoft, and Z. Chu, "Three-dimensional source localization using sparse Bayesian learning on a spherical microphone array", J. Acoust. Soc. Am., Vol. 147, No. 6, pp. 3895-3904, 2020. https://doi.org/10.1121/10.0001383
  18. J. Burgues and S. Marco. "Environmental chemical sensing using small drones: A review", Sci. Total Environ., Vol. 748, p. 141172, 2020.
  19. J. Burgues, M. D. Esclapez, S. Donate, L. Pastor, and S. Marco. "Aerial mapping of odorous gases in a wastewater treatment plant using a small drone", Remote Sens., Vol. 13, No. 9, p. 1757, 2021.
  20. J. Palacin, D. Martinez, E. Clotet, T. Palleja, J. Burgues, J. Fonollosa, A. Pardo, and S. Marco. "Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection", Sens., Vol. 19, No. 9, p. 1957, 2019.
  21. M. Rutkauskas, M. Asenov, S. Ramamoorthy, and D. T. Reid. "Autonomous multi-species environmental gas sensing using drone-based Fourier-transform infrared spectroscopy", Opt. Express, Vol. 27, No. 7, pp. 9578-9587, 2019. https://doi.org/10.1364/OE.27.009578
  22. P. Nooralishahi, F. Lopez, and X. Maldague, "A Drone-Enabled Approach for Gas Leak Detection Using Optical Flow Analysis", Appl. Sci., Vol. 11, No. 4, p. 1412, 2021.