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ASSOCIATED CURVES OF CHARGED PARTICLE MOVING

WITH THE EFFECT OF MAGNETIC FIELD

Muhammed Talat Sariaydin and Aziz Yazla

Abstract. Magnetic curves are the trajectories of charged particals

which are influenced by magnetic fields and they satisfy the Lorentz equa-
tion. It is important to find relationships between magnetic curves and

other special curves. This paper is a study of magnetic curves and this
kind of relationships. We give the relationship between β-magnetic curves

and Mannheim, Bertrand, involute-evolute curves and we give some geo-

metric properties about them. Then, we study this subject for γ-magnetic
curves. Finally, we give an evaluation of what we did.

1. Introduction

The theory of curves in Euclidean 3-space is a fundamental study area in
differential geometry. There are many kinds of curves in Euclidean 3-space. For
example, helices are one of the most frequently used ones. Associated curves
of a given curve are also widely studied. The most popular ones are Bertrand
curve pairs, Mannheim curve pairs, involute-evolute curve pairs and spherical
indicatrices, [19].

Frenet frame of the curves is widely used to describe the geometric properties
of the curves and to classify the curves in Euclidean 3-space. For example,
involute-evolute curve pairs, Bertrand curve pairs and Mannheim curve pairs
are defined using the Frenet frame of the curves. There are many studies about
associated curves, one can see [13,23,27,28].

There is a special kind of curve which is widely studied in differential ge-
ometry and physics. It is called magnetic curve. Magnetic curves are the
trajectories of charged particles which are under the effect of magnetic fields.
They satisfy a certain equation namely the Lorentz equation. This equation
generalizes the equation which is satisfied by the geodesics on a manifold. So,
one can consider the magnetic curves as a generalization of geodesics on a
manifold, [6]. On the other hand, magnetic curves appear also from the vari-
ational problem of the Landau-Hall functional. This functional is the kinetic
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energy functional when there is no magnetic field. The geodesics are known
as the critical points of the energy functional. This is another way to say that
magnetic curves are generalizations of geodesics. So, the geometric properties
of magnetic curves give important information of the manifold which contains
magnetic curves, [10].

In [11], Izumiya and Takeuchi studied general properties of helices and
Bertrand curves and in [20], Masal gave Mannheim B-curve in Euclidean 3-
space. In [7], Ekmekci and Ilarslan gave a characterization of Bertrand curves
in Lorentzian space, in [21], Matsuda and Yorozu proved that no special Frenet
curve in n-dimensional Euclidean space (n ≥ 4) is a Bertrand curve. Ozyilmaz
and Yilmaz studied involute-evolute curve pairs in 4-dimensional Euclidean
space in [26], in [8], Fuchs studied evolutes and involutes of space curves, in [2],
Bilici and Caliskan studied involutes of the spacelike curve with a timelike bi-
normal in Minkowski 3-space, in [9], Fukunaga and Takahashi studied evolutes
and involutes of frontals in the Euclidean plane. In [18], Liu and Wang worked
on Mannheim curve pairs in Euclidean 3-space. In [25], Orbay and Kasap
studied Mannheim partner curves in E3 and gave the relationships between
the curvatures of the Mannheim curve pairs with respect to each other. In
[22], Munteanu studied magnetic curves in Euclidean space. In [6], Druta and
Munteanu studied magnetic curves corresponding to Killing magnetic fields in
Euclidean 3-space. Magnetic curves in Sasakian manifolds are studied by Druta
in [5], magnetic curves on flat para-Kähler manifolds are studied by Jleli and
Munteanu in [12]. Inoguchi and Munteanu studied magnetic curves in the real
special linear group in [10]. There are many studies about magnetic curves,
one can see [14–16].

This study consists of four sections. In Section 1, we mention about the
importance of magnetic curves and associated curves and we present some
recent works from literature. In Section 2, we present definitions of some special
curves which are widely used in differential geometry and we mention about
some basic concepts and properties in there. Section 3 includes our main results
and has two subsections. In Subsection 3.1 we give the relationship between
β-magnetic curves and Mannheim, Bertrand, involute-evolute curves and we
give some geometric properties about them. In Subsection 3.2 we study this
subject for γ-magnetic curves. In last section, we give an evaluation of what
we did.

2. Preliminaries

Assume that (M, g) is a Riemannian manifold. A closed 2-form F on (M, g)
is called a magnetic field and the linear endomorphism ϕ : χ(M) −→ χ(M)
which satisfies

(1) F (X,Y ) = g(ϕ(X), Y ), X, Y ∈ χ(M)

is called the Lorentz force ϕ associated to F.
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The magnetic trajectories of F are the magnetic curves ξ in M which satisfy
the Lorentz equation

(2) ∇ξ′ξ
′ = ϕ(ξ′),

where ∇ is the Levi-Civita connection on M.
Since the equation of geodesics in M is

(3) ∇ξ′ξ
′ = 0,

one can see that the Lorentz equation is a generalization of this equation, so
magnetic curves generalize the geodesics, [6].

Let X be a smooth vector field on a manifold M. A smooth curve ζ : I → M
is said to be an integral curve of X, if for any t ∈ I, [17],

(4) ζ ′(t) = Xζ(t).

Since the Lorentz force is skew-symmetric, we can write

(5)
d

dt
g(ξ′, ξ′) = 2g(∇ξ′ξ

′, ξ′) = 0,

so magnetic curves have a constant speed and energy, [6]. A normal magnetic
curve is a magnetic curve which is parametrized with arc length. Studying on 3-
dimensional Riemannian manifolds, 2-forms and vector fields can be identified.
So, magnetic fields mean divergence free vector fields, [22]. A vector field V on
M is Killing if and only if for every vector fields Y and Z on M

(6) g(∇Y V,Z) + g(∇ZV, Y ) = 0

holds. Magnetic fields corresponding to Killing vector fields are known as
Killing magnetic fields. Their trajectories are called Killing magnetic curves
and are very important since they are related to the Kirchhoff elastic rods, [10].

Let x and x1 be two space curves which are given with the arc length pa-
rameter s and s∗, respectively and {α, β, γ} and {α∗, β∗, γ∗} be their Frenet
vector fields, respectively. Then,

(1) x is called a Mannheim curve and (x, x1) is called a Mannheim curve
pair if for every s and s∗, {β, γ∗} is linearly dependent, [25].

(2) (x, x1) is called a Bertrand curve pair if for every s and s∗, {β, β∗} is
linearly dependent, [24].

(3) x1 is called an involute of x and x is called an evolute of x1 if for every
s and s∗, ⟨α, α∗⟩ = 0, [24].

Note that evolute of any space curve is defined also as the locus of the centers
of curvature of the curve. The original curve is then defined as the involute of
the evolute, [1]. It is well-known that the distance between the corresponding
points of the Bertrand curve pairs is constant. Every circular helix in Euclidean
3-space is a typical example of Bertrand curves, [21].
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3. Results and discussion

In this section, we consider β-magnetic and γ-magnetic curves related to
associated curves. We give some geometric properties about them and we give
conditions on magnetic curves to be a Mannheim, Bertrand, involute-evolute
curve or a straight line.

Let σ be a space curve parametrized with arc length in Euclidean 3-space,
{α, β, γ} be its Frenet vector fields and κ, τ be its curvature and torsion, re-
spectively. If there exists a magnetic field V1 of the curve σ such that

(7) V1 = τα− Ω1β + κγ,

where Ω1 = g(ϕ(α), γ), then σ is called a β-magnetic trajectory of the magnetic
field V1 and if there exists a magnetic field V2 of the curve σ such that

(8) V2 = τα+Ω2γ,

where Ω2 = g(ϕ(α), β), then σ is called a γ-magnetic trajectory of the magnetic
field V2, [3]. κ and τ are non-zero curvatures in this study.

3.1. Associated curves with β-magnetic trajectory

Assume that,

(9) η : I ⊂ R → E3

is a β-magnetic curve parametrized with arc length parameter s, Frenet vector
fields of η are {α, β, γ} and Frenet curvatures of η are κ, τ. β-magnetic field of
η is

(10) W1 =
1√

κ2 +Ω2
1 + τ2

(τα− Ω1β + κγ).

η1 is an integral curve of W1 and the arc length parameter of η1 is denoted by
s∗. Frenet vector fields of η1 are {α∗, β∗, γ∗} and Frenet curvatures of η1 are
κ∗, τ∗. Then, similar to definitions in [4], η1 is called W1-direction curve of η
and η is also called W1-donor curve of η1.

Theorem 3.1. β-magnetic curve η is a Mannheim curve.

Proof. Let η1 be a Mannheim partner curve of η, so we can write

(11) η1(s) = η(s) + λ1(s)β(s),

where λ1 is a differentiable non-zero function. Let us write δ =
√
κ2 +Ω2

1 + τ2.
Differentiating both sides of the equation (11) according to arc length param-
eter s, we get

(12)
1

δ
(τα− Ω1β + κγ)

ds∗

ds
= (1− λ1κ)α+ λ′β + λτγ.

Therefore, we derive

τ
ds∗

ds
= (1− λ1κ)δ,(13)
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−Ω1
ds∗

ds
= λ′

1δ,(14)

κ
ds∗

ds
= λ1δτ.(15)

Considering the equations (13) and (15), we obtain

(16) κ = λ1(κ
2 + τ2).

From [18], η is a Mannheim curve. □

Theorem 3.2. Let η be a Mannheim curve and (η, η1) be a Mannheim curve
pair. Then,

(17) τ∗(λ2 +
1

κ
) sin θ =

τ√
κ2 +Ω2

1 + τ2
,

where θ is the angle between α and α∗.

Proof. Since η is a Mannheim partner curve of η1, we can write

(18) η(s∗) = η1(s
∗) + λ2(s

∗)γ∗(s∗),

where λ2 is a differentiable non-zero function. Let us write δ =
√

κ2 +Ω2
1 + τ2.

Differentiating both sides of the equation (18) according to arc length param-
eter s∗, we get

(19)
dη

ds

ds

ds∗
=

τ

δ
α+ (λ′

2 −
Ω1

δ
)β +

κ

δ
γ − λ2τ

∗β∗.

Taking the inner product of both sides of the equation (19) by β, we get

(20) Ω1 = δλ′
2.

So equation (19) can be rewritten as

(21)
dη

ds

ds

ds∗
=

τ

δ
α+

κ

δ
γ − λ2τ

∗β∗.

On the other hand, we can write

(22) α = α∗ cos θ + β∗ sin θ.

Differentiating both sides of the equation (22) according to s∗, we get

(23)
dα

ds

ds

ds∗
= −(θ′ + κ∗) sin θα∗ + (θ′ + κ∗) cos θβ∗ + τ∗ sin θγ∗.

Then, we derive

(24) θ′ = −κ∗ and κ
ds

ds∗
= τ∗ sin θ.

Considering the equations (21), (22), (23) and (24), we obtain

(25) τ∗(λ2 +
1

κ
) sin θ =

τ

δ
. □

Corollary 3.3. Ω1 = λ′
2

√
κ2+τ2

1−(λ′
2)

2 .
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Proof. The result is obvious from Theorem 3.2. □

Theorem 3.4. η1 is a straight line if and only if

(26)
τ ′ +Ω1κ

τ
=

κ′ − Ω1τ

κ
=

Ω′
1

Ω1
.

Proof. The necessary and sufficient condition for η1 to be a straight line is
η′′1 = 0. Let us write δ =

√
κ2 +Ω2

1 + τ2. So, we derive that η1 is a straight
line if and only if

(27)
d

ds

[
1

δ
(τα− Ω1β + κγ)

]
= 0.

Then, we compute

d

ds

[τ
δ

]
=

−Ω1κ

δ
,(28)

d

ds

[
Ω1

δ

]
= 0,(29)

d

ds

[κ
δ

]
=

Ω1τ

δ
.(30)

Calculating the derivatives, we get

(τ ′ +Ω1κ)δ = τ(κκ′ +Ω1Ω
′
1 + ττ ′),(31)

Ω′
1δ = Ω1(κκ

′ +Ω1Ω
′
1 + ττ ′),(32)

(κ′ − Ω1τ)δ = κ(κκ′ +Ω1Ω
′
1 + ττ ′).(33)

Considering the equations (31), (32) and (33), we obtain

(34)
τ ′ +Ω1κ

τ
=

κ′ − Ω1τ

κ
=

Ω′
1

Ω1
.

□

Corollary 3.5. Let η1 be a straight line. If Ω1 = constant and κ2 + τ2 =
constant, then β-magnetic curve η is a slant helix.

Proof. Since η1 is a straight line,

(35)
τ ′ +Ω1κ

τ
=

κ′ − Ω1τ

κ
=

Ω′
1

Ω1

holds. Then, we derive

(36) Ω1 = − κ2

κ2 + τ2
·
( τ
κ

)′
.

Hence,

(37)
κ2

(κ2 + τ2)
3
2

·
( τ
κ

)′
= constant.

So, η is a slant helix. □
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Theorem 3.6. There is not a β-magnetic curve η such that (η, η1) is a Bert-
rand curve pair.

Proof. Suppose (η, η1) is a Bertrand curve pair. Then, we can write

(38) η1(s) = η(s) + λ3(s)β(s),

where λ3 is a differentiable non-zero function. Differentiating both sides of
equation (38) according to s, we get

(39) α∗ ds
∗

ds
= (1− λ3κ)α+ λ′

3β + λ3τγ.

Taking the inner product of both sides of the equation (39) by β, we find

(40) λ′
3 = 0.

So, after rearranging equation (39), we derive

τ
ds∗

ds
= (1− λ3κ)δ,(41)

−Ω1
ds∗

ds
= λ′

3δ,(42)

κ
ds∗

ds
= λ3τδ,(43)

where δ =
√
κ2 +Ω2

1 + τ2. Since λ′
3 = 0, from equation (42), we get

(44) Ω1
ds∗

ds
= 0.

This is a contradiction, so there is not a β-magnetic curve η such that (η, η1)
is a Bertrand curve pair. □

Theorem 3.7. There is not a β-magnetic curve η such that η1 is an involute
of η.

Proof. Suppose η1 is an involute of η. Then, we can write

(45) η1(s) = η(s) + λ4(s)α(s),

where λ4 is a differentiable non-zero function. Differentiating both sides of
equation (45) according to s, we get

(46) α∗ ds
∗

ds
= (1 + λ′

4)α+ λ4κβ.

Taking the inner product of both sides of the equation (46) by α, we find

(47) 1 + λ′
4 = 0.

So, after rearranging equation (46), we derive

(48) −Ω1
ds∗

ds
= λ4κδ,

(49) τ
ds∗

ds
= 0,
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(50) κ
ds∗

ds
= 0,

where δ =
√
κ2 +Ω2

1 + τ2. From equations (49) and (50), we have a con-
tradiction, so there is not a β-magnetic curve η such that η1 is an involute of
η. □

3.2. Associated curves with γ-magnetic trajectory

Assume that,

(51) µ : I ⊂ R → E3

is a γ-magnetic curve parametrized with arc length parameter s, Frenet vector
fields of µ are {α, β, γ} and Frenet curvatures of µ are κ, τ. γ-magnetic field of
µ is

(52) W2 =
1√

τ2 +Ω2
2

(τα+Ω2γ).

µ1 is an integral curve of W2 and the arc length parameter of µ1 is denoted by
s∗. Frenet vector fields of µ1 are {α∗, β∗, γ∗} and Frenet curvatures of µ1 are
κ∗, τ∗. Then, similar to definitions in [4], µ1 is called W2-direction curve of µ
and µ is also called W2-donor curve of µ1.

Theorem 3.8. γ-magnetic curve µ is not a Mannheim curve.

Proof. The result can be seen by similar calculations as in the proof of Theorem
3.1. □

Theorem 3.9. µ1 is a straight line if and only if

(53) Ω2 = κ = τ + c,

where c is an arbitrary constant.

Proof. The result can be obtained similar to the proof of Theorem 3.4. □

Theorem 3.10. There is not a γ-magnetic curve µ such that (µ, µ1) is a
Bertrand curve pair.

Proof. Following the similar method in the proof of Theorem 3.6, one can
obtain the result. □

Theorem 3.11. There is not a γ-magnetic curve µ such that µ1 is an involute
of µ.

Proof. Following the similar method in the proof of Theorem 3.7, one can
obtain the result. □
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4. Conclusion

Magnetic curves are the trajectories of charged particles which are under
the effect of magnetic fields. They satisfy a certain equation namely the
Lorentz equation. This equation generalizes the equation which is satisfied
by the geodesics on a manifold. So, one can consider the magnetic curves as
a generalization of geodesics on a manifold. These curves are widely studied
in geometry and in their physical practice. This study is a research about the
relationship between magnetic curves and associated curves such as Mannheim
curves el al. in Euclidean 3-space. So finding the relationships between them
is very important.
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