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A CHARACTERIZATION OF ZERO DIVISORS AND

TOPOLOGICAL DIVISORS OF ZERO IN C[a, b] AND ℓ∞

Harish Chandra and Anurag Kumar Patel

Abstract. We give a characterization of zero divisors of the ring C[a, b].
Using the Weierstrass approximation theorem, we completely characterize

topological divisors of zero of the Banach algebra C[a, b]. We also char-

acterize the zero divisors and topological divisors of zero in ℓ∞. Further,
we show that zero is the only zero divisor in the disk algebra A (D) and

that the class of singular elements in A (D) properly contains the class

of topological divisors of zero. Lastly, we construct a class of topological
divisors of zero of A (D) which are not zero divisors.

1. Introduction

Throughout this paper, N denotes the set of all natural numbers, C denotes
the set of complex numbers, C[a, b] denotes the Banach algebra of all continuous
complex valued functions on the closed interval [a, b] under the supremum norm.
Further, ℓ∞ denotes the Banach algebra of all bounded sequences of complex
numbers, C0 denotes the space of all sequences of complex numbers converging
to 0 and C00 denotes the space of all sequences of complex numbers whose
all but finitely many terms are zero. Let D = {z ∈ C : |z| < 1}, D̄ be its
topological closure and T = {z ∈ C : |z| = 1}. Let A (D) denote the disk
algebra, the sup-normed Banach algebra of functions continuous on D̄, which
are analytic in D.
Definition 1 (Zero Set). Let f ∈ C[a, b]. Then the zero set of f is the set
defined by

Zf = {x ∈ [a, b] : f(x) = 0}.
Lemma 1. Let f ∈ C[0, 1]. Then the zero set of f is a closed set.

Definition 2 ([7]). Let A be a Banach algebra. An element x ∈ A is said to
be regular if there exists an element y ∈ A such that xy = yx = 1. An element
x ∈ A is singular if it is not regular.
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Definition 3. A sequence (xn)
∞
n=1 of complex numbers is said to be “bounded

away from zero” if there exists a positive constant δ > 0 so that |xn| ≥ δ for
all n ∈ N.

Lemma 2 ([5]). Let A be a subset of a metric space (X, d). Then the following
statements are equivalent:

(1) A is nowhere dense.
(2) Ā does not contain any non-empty open set.

Lemma 3. Let (X, d) be a metric space. If A is a closed nowhere dense subset
of X, then the complement Ac of A is an open dense set.

Lemma 4 ([5], Closure, Closed Set). Let M be a nonempty subset of a metric
space (X, d) and M be its closure. Then

(1) x ∈ M if and only if there is a sequence (xn)
∞
n=1 in M such that xn → x

as n → ∞.
(2) M is closed if and only if the situation xn ∈ M , xn → x as n → ∞

implies that x ∈ M .

Theorem 1.1 ([6], The Weierstrass Approximation Theorem). If f is a con-
tinuous complex function on [a, b], and ϵ > 0 is given, then there exists a
polynomial p such that

|f(x)− p(x)| < ϵ for all x ∈ [a, b].

Definition 4 ([7], Zero Divisors). Let R be a ring. Then an element z ∈ R is
said to be a zero divisor if either zx = 0 for some non-zero x ∈ R or yz = 0 for
some non-zero y ∈ R.

Definition 5 ([2,7], Topological Divisors of Zero). An element z in a Banach
algebraA is called a topological divisor of zero if there exists a sequence (zn)

∞
n=1

in A such that

(1) ∥zn∥ = 1 ∀ n ∈ N;
(2) Either zzn → 0 or znz → 0 as n → ∞.

We give a proof of the following lemma for the sake of completeness.

Lemma 5. The set of all topological divisors of zero in a Banach algebra is a
closed set.

Proof. Let A be a Banach algebra. Define φ : A → [0,∞) as

φ(a) = inf
∥b∥=1

∥ab∥ ∀a ∈ A.

Then we observe that a is a topological divisor of zero if and only if φ(a) = 0.
To get the desired conclusion, it is sufficient to prove that φ is continuous. To
this end, let (an)

∞
n=1 be a sequence in A such that an → a as n → ∞. Let

ϵ > 0. Then there exists b ∈ A with ∥b∥ = 1 such that

(1.1) φ(a) ≤ ∥ab∥ < φ(a) + ϵ.
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Further, we also have φ(an) ≤ ∥anb∥ for all b with ∥b∥ = 1 and for all n ≥ 1.
This together with (1.1) implies that

lim sup
n→∞

φ(an) ≤ lim sup
n→∞

∥anb∥ = lim
n→∞

∥anb∥ = ∥ab∥ < φ(a) + ϵ

as ϵ is arbitrary, we get that lim sup
n→∞

φ(an) ≤ φ(a). Next, let ϵ > 0. Pick a

sequence (bn)
∞
n=1 in A with ∥bn∥ = 1 such that

(1.2) ∥anbn∥ < φ(an) + ϵ ∀n ≥ 1.

Also, we have

|∥anbn∥ − ∥abn∥| ≤ ∥(an − a)bn∥ ≤ ∥an − a∥ → 0 as n → ∞.

This gives that for sufficiently large n, we have ∥abn∥−ϵ < ∥anbn∥ < ∥abn∥+ϵ.
This together with (1.2) gives that

φ(a) ≤ ∥abn∥ < ∥anbn∥+ ϵ < φ(an) + 2ϵ

as ϵ is arbitrary, the preceding inequality gives that φ(a) ≤ lim inf
n→∞

φ(an). Thus,

we must have lim
n→∞

φ(an) = φ(a). This completes the proof. □

S. J. Bhatt and H. V. Dedania ([1]) proved the following result.

Theorem 1.2. Every element of a complex Banach algebra (A, ∥ · ∥) is a
topological divisor of zero (TDZ) if at least one of the following holds:

(1) A is infinite dimensional and admits an orthogonal basis.
(2) A is a nonunital uniform Banach algebra (uB-algebra) in which the

Silov boundary ∂A coincides with the carrier space (the Gelfand space)
∆(A) (in particular, A is nonunital regular uB-algebra).

(3) A is a nonunital hermitian Banach∗-algebra with continuous involution
(in particular, A is a nonunital C⋆-algebra).

Motivated by the above theorem, we characterize zero divisors and topolog-
ical divisors of zero in C[a, b] and ℓ∞. We also show that zero is the only zero
divisor in A (D). Further, we give a class of singular elements of A (D), which
are not topological divisors. Finally, we construct a class of topological divisors
of zero in A (D), which are not zero divisors. Several results of this paper are
new and methods of proof of all the results given in this paper are new and
interesting to the best of our knowledge and understanding.

2. A characterization of zero divisors and topological divisors of
zero in the Banach algebra C[a, b]

The following theorem gives a complete characterization of zero divisors of
C[a, b].

Theorem 2.1. An element f ∈ C[a, b] is a zero divisor if and only if the zero
set of f contains a non-empty open interval.
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Proof. Let f ∈ C[a, b] and let Zf = {x ∈ [a, b] : f(x) = 0} be the zero set of f
which contains a non-empty open interval (c, d). Define g : [a, b] → R by

g(x) =


0, if x ∈ [a, b] \ (c, d);
x− c, if c < x ≤ c+d

2 ;

d− x, if c+d
2 ≤ x < d.

x-axis
c+d
2

c da b

d−c
2

Figure 1. Graph of the function g

Clearly g(x) ̸= 0 on (c, d) ⊆ [a, b] and is a continuous function on [a, b], hence
g ∈ C[a, b]. Since f(x) = 0 on Zf , and g(x) = 0 on V = [a, b] \ (c, d),
then (fg)(x) = 0 ∀ x ∈ [a, b]. This shows that f is a zero divisor of C[a, b].
Conversely, let f ∈ C[a, b] be a zero divisor. Now suppose 0 ̸= f ∈ C[a, b]
and on the contrary, assume that Zf does not contain any non-empty open
interval. Then by Lemma 1 and Lemma 2, Zf is a closed nowhere dense set.
Let Vf = [a, b]\Zf . Then by Lemma 3, Vf is an open dense set in [a, b]. Since f
is a zero divisor, there exists 0 ̸= g ∈ C[a, b] such that (fg)(x) = 0 ∀ x ∈ [a, b].
Since f ̸= 0 on Vf , so g(x) = 0 ∀ x ∈ Vf . Since Vf is an open dense set in
[a, b], then from Lemma 4, for each x ∈ [a, b], there exists a sequence (xn)

∞
n=1

in Vf such that xn → x as n → ∞. But xn ∈ Vf , so g(xn) = 0 ∀ n ∈ N. Since
g is continuous on [a, b], then g(x) = 0. Thus g = 0, which is a contradiction.
Hence Zf must contains a non-empty open interval. □

Lemma 6. Let A be a commutative Banach algebra and x ∈ A be a topological
divisor of zero. Then for each y ∈ A, xy is also a topological divisor of zero.

Proof. Let x ∈ A be the topological divisor of zero. Then there exists a se-
quence (xn)

∞
n=1 in A such that ∥xn∥ = 1 for all n ∈ N and xxn → 0 as n → ∞.

Let y ∈ A be any element. Then, we have

∥yxxn∥ ≤ ∥y∥∥xxn∥.
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Since xxn → 0 as n → ∞, then

∥(yx)xn∥ → 0.

Hence yx is a topological divisor of zero. □

The following theorem gives a complete characterization of the topological
divisors of zero in C[a, b].

Theorem 2.2. An element f ∈ C[a, b] is a topological divisor of zero if and
only if f has at least one zero in [a, b].

Proof. Let f ∈ C[a, b] which has a zero, say f(c) = 0 for some c ∈ [a, b]. Since
f is continuous, by the Weierstrass approximation theorem, for given ϵ > 0,
there exists a polynomial p(x) such that

|f(x)− p(x)| < ϵ/2 ∀ x ∈ [a, b].

This implies
|f(c)− p(c)| < ϵ/2.

Thus
|p(c)| < ϵ/2.

Consider the polynomial q(x) = p(x)− p(c). Then q(c) = 0 and

|f(x)− q(x)| = |f(x)− p(x) + p(c)| ≤ |f(x)− p(x)|+ |p(c)| < ϵ

2
+

ϵ

2
= ϵ.

Hence we can find a sequence of polynomials (qn)
∞
n=1 in C[a, b] such that qn(c) =

0 ∀ n ∈ N and qn → f uniformly on [a, b]. Since qn(c) = 0, qn(x) = (x−c)rn(x),
where rn(x) is a polynomial in C[a, b]. Now z(x) = x−c is a topological divisor
of zero, therefore by Lemma 6, qn is a topological divisor of zero for all n ∈ N.
Since qn → f uniformly and by Lemma 5, the class of topological divisors of
zero is a closed set, it follows that f is a topological divisor of zero. Conversely,
suppose f ∈ C[a, b] is a topological divisor of zero. Suppose that f has no zero
in [a, b]. Then, 1

f ∈ C[a, b]. Let g(x) = 1
f(x) . Then g(x)f(x) = 1 ∀ x ∈ [a, b].

Since f is a topological divisor of zero, there exists a sequence (fn)
∞
n=1 in C[a, b]

with ∥fn∥ = 1 ∀ n ∈ N such that ffn → 0 as n → ∞. Since gf = 1, then
fn = gffn → 0 as n → ∞. This is a contradiction as ∥fn∥ = 1 ∀ n ∈ N. Hence
f must have a zero in [a, b]. □

Remark 1. The above theorem shows that z(t) = (t−c)k is a topological divisor
of zero but is not a zero divisor for each k > 0 and for each c ∈ [a, b].

3. A characterization of zero divisors and topological divisors of
zero in the Banach algebra ℓ∞

In this section, we give a complete characterization of regular elements, zero
divisors and topological divisors of zero in the Banach algebra ℓ∞.

Theorem 3.1. An element x = (xn)
∞
n=1 ∈ ℓ∞ is a regular element if and only

if x is bounded away from zero.
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Proof. Let x = (xn)
∞
n=1 ∈ ℓ∞ be a regular element. Then there exists an

element y = (yn)
∞
n=1 in ℓ∞ such that xy = (1, 1, . . . , 1, . . .) = 1. That is

xnyn = 1 for all n ∈ N. This implies that, yn = 1
xn

∀ n ∈ N. Since y ∈ ℓ∞,

∃ M > 0 such that |yn| ≤ M ∀ n ∈ N. Hence 1
M ≤ |xn| ∀ n ∈ N. Hence x is

bounded away from zero. Conversely, let x ∈ ℓ∞ be bounded away from zero.
Then there exists a positive constant M such that M ≤ |xn| for all n ∈ N.
This implies that 1

|xn| ≤ 1
M ∀ n ≥ 1. Now choosing y = ( 1

xn
)∞n=1, we get

y = (yn) ∈ ℓ∞ and xy = 1. Hence x is a regular element of ℓ∞. □

The following theorem characterizes zero divisors of ℓ∞.

Theorem 3.2. An element (xn)
∞
n=1 ∈ ℓ∞ is a zero divisor if and only if there

exists n ≥ 1 such that xn = 0.

Proof. Let x = (xn)
∞
n=1 ∈ ℓ∞ be a zero divisor. Then ∃ 0 ̸= y = (yn)n≥1 ∈ ℓ∞

such that xy = (xnyn)
∞
n=1 = 0. That is, xnyn = 0 ∀ n ∈ N. Since y ̸= 0,

then ∃ k ≥ 1 such that yk ̸= 0. Therefore, xkyk = 0 implies that xk = 0.
Conversely, let ∃ n ≥ 1 such that xn = 0. Then for y = (yk)

∞
k=1, where yn = 1

and yk = 0 ∀k ̸= n, we get, xy = 0. Hence x is a zero divisor. □

Remark 2. C00 is properly contained in the set of all zero divisors of ℓ∞.

Proof. Let x = (xk)
∞
k=1 ∈ C00, where xk = 0 for all k ≥ n+1. Take y = (yk)

∞
k=1,

where yk = 0 for all k ≤ n and yk = 1 for all k ≥ n+ 1. Then xy = 0. So x is
a zero divisor. Also, note that x = (0, 1, 1, . . .) is a zero divisor but not in C00.
So the inclusion is proper. □

Theorem 3.3. In the Banach algebra ℓ∞ the set of all topological divisors of
zero and the set of all singular elements coincide.

Proof. Clearly, a topological divisor of zero is a singular element. Let x =
(xn)

∞
n=1 be a singular element in ℓ∞. Then x is not bounded away from zero.

Hence, there exists a subsequence (xnk
)∞k=1 of (xn)

∞
n=1 such that xnk

→ 0 as

k → ∞. Take z(k) = enk
∀ k ≥ 1. Then ∥z(k)∥ = 1 ∀ k ≥ 1 and ∥xz(k)∥ =

|xnk
| → 0 as k → ∞. Thus ∥xz(k)∥ = |xnk

| → 0 as k → ∞. This shows that x
is a topological divisor of zero. Hence the proof. □

Remark 3. C0 is properly contained in the set of all topological divisors of zero
of ℓ∞.

Proof. Let x = (xn)
∞
n=1 ∈ C0. Then |xen| = |xn| → 0 as n → ∞. Then |xn| → 0

as n → ∞. So x is a topological divisor of zero. For the proper containment,
take the element x = (xn) = (0, 1, 1, . . .) ∈ ℓ∞, which is a topological divisor
of zero but x /∈ C0. □
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4. Zero divisors and topological divisors of zero in the disk algebra
A (D)

In this section, we show that zero is the only zero divisor in the disk alge-
bra A (D). We also give a class of singular elements in A (D), which are not
topological divisors of zero. In the end, we give a class of topological divisors
of zero in A (D), which are not zero divisors.

Proposition 1. In the disk algebra A (D) zero is the only zero divisor.

Proof. Suppose 0 ̸≡ f ∈ A (D) is a zero divisor. Then there exists 0 ̸= g ∈
A (D) such that (fg)(z) = 0 ∀ z ∈ D. Since f is continuous and f ̸≡ 0, there
exists a z0 ∈ D such that f(z) ̸= 0 in an open disk centered at z0, say D1 ⊆ D.
Since (fg)(z) = 0 ∀ z ∈ D1. It follows that g(z) = 0 ∀ z ∈ D1. By identity
principle, g(z) = 0 ∀z ∈ D̄. Thus a non-zero element in A (D) can not be a
zero divisor. □

Remark 4. Every topological divisor is a singular element but the following
lemma shows that the converse is not true.

Lemma 7 ([3, 4]). For a finite sequence z1, z2, . . . , zn in D and γ ∈ T, let

B(z) = γ

n∏
i=1

z − zi
1− z̄iz

be a finite Blaschke product. Then B ∈ A (D) is a singular element but not a
topological divisor of zero.

Proof. Clearly B ∈ A (D) and |B(z)| = 1 for all z ∈ T. By the maximum
modulus principle, for every f ∈ A (D), we have

(4.1) ∥Bf∥ = sup
z∈D̄

|B(z)(f(z))| = max
z∈T

|B(z)||f(z)| = ∥f∥.

B is a singular element in A (D), since B(zk) = 0 for each k = 1, 2, . . . , n. We
now assert that B is not a topological divisor of zero. Indeed, if there exists a
sequence (gn)

∞
n=1 in A (D) such that Bgn → 0 as n → ∞, then from (4.1), we

have

∥Bgn∥ = ∥gn∥ ∀ n ∈ N.
Hence (gn)

∞
n=1 must converge to 0. Therefore B can not be a topological divisor

of zero. □

Theorem 4.1. Let A = A (D) be the disk algebra. Let f(z) =
(
z−z0

2

)
for some

z0 ∈ C. Then f is a topological divisor of zero in A if and only if |z0| = 1.

Proof. Suppose z0 ∈ T. Define fn(z) =
(
z+z0
2

)n
for each n ∈ N. Since z0 ∈ T,

we have

fn ∈ A and |fn(z0)| = |zn0 | = |z0|n = 1 ∀ n ∈ N.
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Therefore ∥fn∥ = 1 ∀ n ∈ N. Now note that

ffn(z) =

(
z − z0

2

)(
z + z0

2

)n

,

and each z ∈ T is of the form z = eiθ for some θ ∈ [0, 2π]. So z0 = eiθ0 for
some θ0 ∈ [0, 2π]. Thus, for each z ∈ T, we have,

z − z0
2

=
eiθ − eiθ0

2
= iei(

θ+θ0
2 ) sin

(
θ − θ0

2

)
,

z + z0
2

=
eiθ + eiθ0

2
= ei(

θ+θ0
2 ) cos

(
θ − θ0

2

)
.

Therefore f(z) = iei(
θ+θ0

2 ) sin
(
θ−θ0
2

)
and fn(z) =

(
ei(

θ+θ0
2 ) cos

(
θ−θ0
2

))n

. This

implies that |ffn(z)| =
∣∣sin ( θ−θ0

2

)
cosn

(
θ−θ0

2

)∣∣. A simple computation shows
that

∥ffn∥ =
1√
1 + n

(√
n

n+ 1

)n

.

Hence ∥ffn∥ = 1√
1+n

(√
n

n+1

)n

→ 0 as n → ∞. Hence f is a topological

divisor of zero in A. Now suppose z0 /∈ T. Let r = |z0| < 1. We will show that
f is not a topological divisor of zero in A.

x-axis

y-axis

•z0

11+
r

2

1−
r

2

Figure 2. Bounds for |f(z)|

From Figure 2, observe that 1−r
2 ≤ |f(z)| ≤ 1+r

2 ∀ z ∈ T.
Suppose there exists a sequence (fn)

∞
n=1 in A such that ffn → 0 as n → ∞.

Since ∥ffn∥ = supz∈D̄ |f(z)fn(z)|. Therefore 1−r
2 |fn(z)| ≤ ∥ffn∥ ∀ n ∈ N and

z ∈ D̄. Hence 1−r
2 ∥fn∥ ≤ ∥ffn∥ → 0 as n → ∞ implies that (1−r)∥fn∥ → 0 as

n → ∞. Therefore fn → 0 as n → ∞. Hence f can not be a topological divisor
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of zero in A. A similar argument shows that if r = |z0| > 1, then f(z) = ( z−z0
2 )

is not a topological divisor of zero in A. □
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