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TWO LINEAR POLYNOMIALS SHARED BY AN ENTIRE

FUNCTION AND ITS LINEAR DIFFERENTIAL

POLYNOMIALS

Goutam Kumar Ghosh

Abstract. In this paper, we study a uniqueness problem of entire func-
tions that share two linear polynomials with its linear differential poly-

nomial. We deduce two theorems which improve some previous results

given by I. Lahiri [7].

1. Introduction, definitions and results

Let f and g be two nonconstant entire functions, and let a be a polynomial.
We denote by E(a; f) the set of zeros of f−a counted with multiplicities and by
E(a; f) the set of distinct zeros of f −a. Then we say that f and g share a CM
(counting multiplicities) if E(a; f) = E(a; g). Also we say that f and g share a
IM (ignoring multiplicities) if E(a; f) = E(a; g). For standard definitions and
results we refer the reader to [4]. By meromorphic functions we shall always
mean meromorphic functions in the complex plane C. We adopt the standard
notations of the Nevanlinna theory of meromorphic functions as explained in
[13]. It will be convenient to let E denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. For a non-
constant meromorphic function h, we denote by T (r, h) any quantity satisfying
S(r, h) = o{T (r, h)} as r → ∞ and r /∈ E.

In 1977, L. A. Rubel and C. C. Yang [11] first investigated the uniqueness
of entire functions, which share certain values with their derivatives. They
proved that if a non-constant entire function f and its first derivative f (1)

share two distinct finite numbers a, b CM, then f ≡ f (1). Considering f(z) =

ee
z ∫ z

0
e−et(1−et)dt [13, p. 386], one can easily verify that sharing of two values

is essential.
In 1979, E. Mues and N. Steinmetz [10] improved the result of Rubel and

Yang [11] replacing CM shared values by IM shared values. In 1990, Yang [12]
extended the result of Rubel and Yang to any kth order derivative f (k) of the
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entire function f . In 2000, Li and Yang [9] improved the result of Yang [12]
and settled a conjecture of Frank [2] affirmatively. Their result can be stated
as follows.

Theorem 1.1 ([9]). Let f be a nonconstant entire function, k be a positive
integer and a and b two distinct finite values. If f and f (k) share a and b IM,
then f ≡ f (k).

The natural extension of a derivative of an entire function f is a linear
differential polynomial generated by f . In 1994, Gu [3] extended the result
of Rubel and Yang [11] to a linear differential polynomial. The result of Gu
stated as follows:

Theorem 1.2 ([3]). Let f be a nonconstant entire function a and b be two
distinct finite complex numbers and L(f) = f (n) + a1f

(n−1) + · · ·+ anf , where
aj (j = 1, 2, . . . , n) are small entire functions of f . If f and L(f) share a and
b CM and a+ b ̸= 0 or an ̸≡ −1, then f ≡ L(f).

The following theorem of Bernstein et al. [1] is an improvement of Theorem
1.2.

Theorem 1.3 ([1]). Let f be a nonconstant entire function, a and b be two
distinct finite complex numbers and L(f) = bnf

(n)+bn−1f
(n−1)+ · · ·+b1f (1)+

b0f , where bj (j = 0, 1, 2, . . . , n) are small meromorphic functions of f . If f
and L(f) share a and b CM, then f ≡ L(f).

In contrast to the derivative of an entire function, we see in the following
examples that it is not possible in the case of a linear differential polynomial
to replace any CM shared value by an IM shared value.

Example 1.4. Let f = 1 + (ez − 1)2 and L(f) = 1
2f

(2) − f (1). Then f and
L(f) share 1 IM and 2 CM but f ̸≡ L(f).

Example 1.5 ([8]). Let f = 1
2e

z + 1
2e

−z and L(f) = f (2) + f (1). Then f and
L(f) share 1 and −1 IM but f ̸≡ L(f).

Although one IM shared value and one CM shared value cannot ensure the
equality of an entire function with a linear differential polynomial generated by
it, Li and Yang [8] exhibited two possibilities in the following theorem.

Theorem 1.6 ([8]). Let f be a nonconstant entire function and

L(f) = b−1 +

n∑
j=0

bjf
(j),(1.1)

where bj (j = −1, 0, 1, . . . , n) are small meromorphic functions of f . Let a and
b be two distinct finite values. If f and L(f) share a CM and b IM, then either
f ≡ L(f) or f and L(f) have the following forms: f = b+(a− b)(eα − 1)2 and
L(f) = b+ (a− b)(eα − 1), where α is an entire function.
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If we look at the above theorem, then we see that in the case of non-equality
of f and L(f), almost all the b-points of f and L(f) are double and simple,
respectively, whereas the a-points of f and L(f) are almost all simple. In fact,
we shall show that the simple a-points and b-points of f play a role to ascertain
the equality of f and L(f). Also, we shall see that the simple a-points of f still
play a crucial role even if the other value b shared IM. To this end, we need
the following idea of value sharing.

Let A ⊂ C and k be a nonnegative integer or infinity. We denote by
Ek(a; f,A) the collection of those a-points of f that belong to A, where an
a-point of f with multiplicity p is counted p times if p ≤ k and k + 1 times if
p ≥ k + 1.

Also by NA(r, a; f) we denote the reduced counting function of those a-
points of f that lie in A. We now put A = E(a; f) ∩ E(a; g) and B =
E(a; f)∆E(a; g), where ∆ denotes the symmetric difference of sets.

We shall say that f and g share the value a with weight k in the weak
sense, written symbolically f , g share (a, k)∗, if Ek(a; f,A) = Ek(a; g,A) and
NB(r, a; f) = S(r, f) and NB(r, a; g) = S(r, g).

It is clear that if f , g share (a, k)∗, then f , g share (a, p)∗ for every integer p
with 0 ≤ p < k. Further f , g share (a, 0)∗ if and only if f , g share the value a
IM∗ and f , g share the value a CM∗ if f , g share (a,∞)∗. For the definitions
of IM∗ and CM∗ we refer to [8]. We further note that the notion of weighted
sharing in the weak sense coincides with that of weighted sharing (see [5,6] for
the definition) if B = ∅.

If a = a(z) is a small function of f and g, then we shall say that f , g share
(a, k)∗ if f − a and g − a share (0, k)∗.

In 2018, I. Lahiri [7] improved Theorem 1.6 in the following manner.

Theorem 1.7 ([7]). Let f be a nonconstant entire function and L(f) be defined
by (1.1). Suppose that a and b are two distinct finite complex numbers. If f
and L(f) share (a, 1)∗ and (b, 1)∗, then f ≡ L(f).

In the same paper I. Lahiri [7] gave another theorem.

Theorem 1.8 ([7]). Let f be a nonconstant entire function and L(f) be defined
by (1.1). Suppose that a and b are two distinct finite complex numbers. If f
and L(f) share (a, 1)∗ and (b, 0)∗, then the conclusion of Theorem 1.6 holds.

We now state the main results of the paper which improve Theorem 1.7 and
Theorem 1.8 by considering shared linear polynomials instead of shared values.

Theorem 1.9. Let f be a transcendental entire function and L(f) be defined
by (1.1). Suppose that a(z) = αz + β1, b(z) = αz + β2 are two distinct linear
polynomials where, α(̸= 0), β1(̸= β2) are constants. If f and L(f) share (a, 1)∗

and (b, 1)∗, then f ≡ L(f).

Theorem 1.10. Let f be a transcendental entire function and L(f) be defined
by (1.1). Suppose that a(z) = αz + β1, b(z) = αz + β2 are two distinct linear
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polynomials, where α(̸= 0), β1( ̸= β2) are constants. If f and L(f) share (a, 1)∗

and (b, 0)∗, then the conclusion of Theorem 1.6 holds.

Li and Yang [8] exhibited by an example that Theorem 1.6 is not valid
for meromorphic functions. However, they proved the following extension of
Theorem 1.6.

Theorem 1.11 ([8]). Let f be a nonconstant meromorphic function with
N(r, f) = S(r, f) and L(f) be defined by (1.1). Let a(̸≡ ∞) and b(̸≡ ∞) be two
distinct small functions of f . If f and L(f) share a CM∗ and b IM∗, then
either f ≡ L(f) or f and L(f) have the following forms: f = b+(a−b)(eα−1)2

and L(f) = b+ (a− b)(eα − 1), where α is an entire function.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. Let f and g be two transcendental entire functions sharing (a, 0)∗,
(b, 0)∗ and (∞, 0)∗, where a(z) = α1z + β1, b(z) = α2z + β2 are two distinct
linear polynomials and α1(̸= 0), β1, α2(̸= 0), β2 are constants. Then

T (r, f) ≤ 3T (r, g) + S(r, f)

and

T (r, g) ≤ 3T (r, f) + S(r, g).

The lemma is a consequence of the Second Fundamental Theorem.

Note. Lemma 2.1 implies that S(r, f) = S(r, g).

Lemma 2.2. Let f be a transcendental entire function and L(f) be defined by
(1.1). Let a(z) = αz + β1, b(z) = αz + β2 be two distinct linear polynomials,
where α(̸= 0), β1(̸= β2) are constants. If f and L(f) share (a, 0)∗ and (b, 0)∗,
then

T (r, f) = N(r, a; f) +N(r, b; f) + S(r, f)

provided f ̸≡ L(f).

Proof. Let ϕ = (f(1)−α)(f−L)
(f−a)(f−b) . By Lemma 2.1, S(r, L) = S(r, f). We suppose

that f ̸≡ L. Then by the hypothesis N(r, ϕ) = S(r, f). Since

ϕ =
1− b0
a− b

(
a(f (1) − α)

f − a
− b(f (1) − α)

f − b

)
− b−1 + b1α

a− b

(
f (1) − α

f − a
− f (1) − α

f − b

)
− f (1) − α

f − a

(
b1(f

(1) − α)

f − b
− b2f

(2)

f − b
− · · · − bnf

(n)

f − b

)
,

from the lemma of logarithmic derivative we see that m(r, ϕ) = S(r, f) and so
T (r, ϕ) = S(r, f). We have

T (r, f − L) = T

(
r,
ϕ(f − a)(f − b)

f (1) − α

)
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= T

(
r,

f (1) − α

(f − a)(f − b)

)
+ S(r, f)

= T

(
r,

1

a− b

(
f (1) − α

f − a
− f (1) − α

f − b

))
+ S(r, f)

= N

(
r,

1

a− b

(
f (1) − α

f − a
− f (1) − α

f − b

))
+ S(r, f)

= N

(
r,
f (1) − α

f − a

)
+N

(
r,
f (1) − α

f − b

)
+ S(r, f)

= N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+ S(r, f).

From the expression of L, it is clear that T (r, f −L) ≤ T (r, f) + S(r, f). Thus
N(r, 1

f−a ) +N(r, 1
f−b ) ≤ T (r, f) + S(r, f). According to Nevanlinna’s Second

Fundamental Theorem and above inequality, we have T (r, f) = N(r, a; f) +
N(r, b; f) + S(r, f). □

3. Proofs of the theorems

Proof of Theorem 1.9. Set

ϕ =
(f (1) − α)(f − L)

(f − a)(f − b)
, ψ =

L(1) − α

L− b
− f (1) − α

f − b
and γ =

L(1) − α

L− a
− f (1) − α

f − a
.

Then

ϕ
f − a

f (1) − α
= 1− L− b

f − b
.(3.1)

By taking the derivative in both sides of the above identity and using it again,
we deduce that

(3.2) (ϕ+ ψ)
f (1) − α

f − a
− ϕ

f (2)

f (1) − α
+ ϕ(1) − ϕψ = 0.

Since f and L share (a, 1)∗, (b, 1)∗ and (∞, 0)∗, by Lemma 2.1, S(r, L) =
S(r, f). We suppose that f ̸≡ L. Then by the hypothesis N(r, ϕ) = S(r, f).
Since

ϕ =
1− b0
a− b

(
a(f (1) − α)

f − a
− b(f (1) − α)

f − b

)
− b−1 + b1α

a− b

(
f (1) − α

f − a
− f (1) − α

f − b

)
− f (1) − α

f − a

(
b1(f

(1) − α)

f − b
− b2f

(2)

f − b
− · · · − bnf

(n)

f − b

)
,

from the lemma of the logarithmic derivative we see that m(r, ϕ) = S(r, f) and
so T (r, ϕ) = S(r, f).

Now we verify N (2(r, a; f) = S(r, f) and N (2(r, b; f) = S(r, f). Let z0 be
a zero of f − a with multiplicity p(≥ 2) and a zero of L − a with multiplicity
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q(≥ 2). Then z0 is a zero of ϕ with multiplicity at least min{p, q} − 1 ≥ 1.
Hence

N (2(r, a; f | L = a,≥ 2) ≤ N(r, 0;ϕ) = S(r, f),

where N (2(r, a; f | L = a,≥ 2) denotes the reduced counting function of those
a-points of f whose multiplicity(≥ 2) which are also multiple a-points of L.
Since f and L share (a, 1)∗,

N (2(r, a; f) = N (2(r, a; f | L = a,≥ 2) +N (2(r, a; f | L = a,= 1)

= S(r, f),

where N (2(r, a; f | L = a,= 1) denotes the reduced counting function of multi-

ple a-points of f are also simple a-pionts of L. Similarly, N (2(r, b; f) = S(r, f).
Since by Lemma 2.2 we have

T (r, f) = N(r, a; f) +N(r, b; f) + S(r, f),

so N(r, a; f) and N(r, b; f) not simultaneously S(r, f). Now we consider the
following cases.

Case I. N(r, a; f) ̸= S(r, f). Since

ψ =
L(1) − α

L− b
− f (1) − α

f − b

and f and L share (b, 1)∗,

N(r, ψ) = N(r, ψ) ≤ N (2(r, b; f) + S(r, f)

= S(r, f),

since simple zeros of f − b are not the poles of ψ. Since m(r, ψ) = S(r, f), we
obtain T (r, ψ) = S(r, f).

Since N(r, a; f) ̸= S(r, f) and N (2(r, a; f) = S(r, f), it follows from (3.2)
that

ϕ+ ψ ≡ 0

and so,

f (2)

f (1) − α
− ϕ(1)

ϕ
+
L(1) − α

L− b
− f (1) − α

f − b
= 0.

Integrating the above equation we get

ϕ(f − b) = c(f (1) − α)(L− b),

where c is a nonzero constant. Now using the definition of ϕ,

(3.3) (f − L) = c(f − a)(L− b).

From (3.3) f − b = (L− b) + c(f − a)(L− b) which implies

(3.4)
f − b

L− b
= c

(
f − ac− 1

c

)
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and

(3.5)
L− a

f − a
= −c

(
L− bc+ 1

c

)
.

Since f and L share (a, 1)∗ and (b, 1)∗, it follows from (3.4) and (3.5) that

N

(
r,
ac− 1

c
; f

)
= N

(
r, 0;

f − b

L− b

)
≤ N (2(r, b; f) + S(r, f)

= S(r, f)

and

N

(
r,
bc+ 1

c
;L

)
= N

(
r, 0;

L− a

f − a

)
≤ N (2(r, a;L) + S(r, L)

= N (2(r, a; f) + S(r, L)

= S(r, L)

and by the Second Fundamental Theorem,

(3.6) T (r, f) = N(r, a; f) + S(r, f)

and

(3.7) T (r, L) = N(r, b;L) + S(r, L).

From (3.6) and (3.7) and Lemma 2.2, we find that T (r, L) = S(r, L), which is
a contradiction.

Case II. N(r, b; f) ̸= S(r, f). Since

γ =
L(1) − α

L− a
− f (1) − α

f − a

and f and L share (a, 1)∗,

N(r, γ) = N(r, γ) ≤ N (2(r, a; f) + S(r, f)

= S(r, f),

since simple zeros of f − a are not the poles of γ. Since m(r, γ) = S(r, f), we
obtain T (r, γ) = S(r, f). From the definition of ϕ,

(3.8) ϕ
f − b

f (1) − α
= 1− L− a

f − a
.

By taking the derivative in both sides of the above identity and using it again,
we deduce that

(3.9) (ϕ+ γ)
f (1) − α

f − b
− ϕ

f (2)

f (1) − α
+ ϕ(1) − ϕγ = 0.
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Since N(r, b; f) ̸= S(r, f) and N (2(r, b; f) = S(r, f), from (3.9) we get ϕ+γ ≡ 0.
So,

f (2)

f (1) − α
− ϕ(1)

ϕ
+
L(1) − α

L− a
− f (1) − α

f − a
= 0.

Proceeding as in Case I, N(r, ac+1
c ;L) = S(r, L) and N(r, bc−1

c ; f) = S(r, f).

By the Second Fundamental Theorem, T (r, f) = N(r, b; f)+S(r, f) and T (r, L)
= N(r, a;L) + S(r, L). Since N(r, b;L) = N(r, a; f) + S(r, L) it follows from
Lemma 2.2 that T (r, L) = S(r, L), which is a contradiction. This proves the
theorem. □

Proof of Theorem 1.10. Let L = L(f) and define ϕ as in the proof of Theorem
1.9. Since f and L share (a, 1)∗, (b, 0)∗ and (∞, 0)∗, by Lemma 2.1, S(r, f) =
S(r, L). Suppose f ̸≡ L. By the hypothesis, T (r, ϕ) = S(r, f). Since f and L
share (a, 1)∗, as in the proof of Theorem 1.9, N (2(r, a; f) = S(r, f).

We first suppose that N(r, b; f) = S(r, f). Then by Lemma 2.2, N(r, a; f) ̸=
S(r, f). Proceeding as the proof of Case I of Theorem 1.9,

T (r, L) = N(r, b;L) + S(r, L)

= N(r, b; f) + S(r, L)

= S(r, L),

which is a contradiction. Therefore N(r, b; f) ̸= S(r, f). Now, proceeding as
the proof of Case II of Theorem 1.9, we obtain (3.9).

Suppose that ϕ+ γ ≡ 0. Then, from (3.9),

(3.10)
f (2)

f (1) − α
− ϕ(1)

ϕ
+
L(1) − α

L− a
− f (1) − α

f − a
= 0.

Integrating the above and using the definition of ϕ, we get

(3.11) c1(f − L) = (L− a)(f − b),

where c1 is a nonzero constant. Let z1 be a b-point of f with multiplicity p and
a b-point of L with multiplicity q. From (3.11), it follows that p ≤ q. By the
Taylor expansion in some neighbourhood of z1, we get

f(z)− b = αp(z − z1)
p +O(z − z1)

p+1

and
L(z)− b = βq(z − z1)

q +O(z − z1)
q+1,

where αpβq ̸= 0.
We suppose that p < q. Then, in some neighbourhood of z1,

f(z)− L(z)

f(z)− b
=
αp +O(z − z1)

αp +O(z − z1)
.

Therefore, putting z = z1 in (3.11) we get c1 = b− a. Now from (3.11) we get
for c1 = b − a, (b − a)(f − L) = (L − a)(f − b) implies (L − b)(f − a) = 0,
which is a contradiction. Therefore p = q and so f and L share (b,∞)∗. Then,
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by Theorem 1.9, f ≡ L, which is a contradiction. Hence, ϕ+ γ ̸≡ 0. So, from
(3.9), we have

N1)(r, b; f) ≤ N(r, 0;ϕ+ γ) + S(r, f)

= S(r, f).

Let z2 be a b-point of f with multiplicity greater than or equal to n+ 2. If
z2 is a b-point of L, then from (1.1) and the hypothesis, b = b−1(z2)+bb0(z2)+
b1(z2)α.

If b(z) ̸≡ b−1(z) + bb0(z) + b1(z)α, then

N (n+2(r, b; f) ≤ N(r, b; b−1 + bb0 + b1α) + S(r, f)

= S(r, f).

If b ≡ b−1(z) + bb0(z) + b1(z)α, then from (1.1), L − f = (b0 − 1)(f − b) +
b1(f

(1) − α) + b2f
(2) + · · · + bnf

(n). Hence, if z2 is not a pole of any one of
bj(j = 0, 1, 2, . . . , n), then z2 is a zero of L− f with multiplicity ≥ 2 and so is
a zero of ϕ.

Therefore,

N (n+2(r, b; f) ≤ N(r, 0;ϕ) +

n∑
j=0

N(r,∞; bj)

= S(r, f).

Hence in any case,

N (n+2(r, b; f) = S(r, f).

Next let z3 be a b-point of f with multiplicity p (2 ≤ p ≤ n+1). If z3 is not
a pole of ϕ(1) − ϕγ, then from (3.9) that ϕ(z3) + pγ(z3) = 0.

We suppose that ϕ(z) + pγ(z) ̸≡ 0 for any p ∈ {2, 3, . . . , n+ 1}. Then, from
above,

Nn+1)(r, b; f)−N1)(r, b; f) ≤
n+1∑
p=2

N(r, 0;ϕ+ pγ) +N(r,∞;ϕ(1) − ϕγ)

= S(r, f)

and so

Nn+1)(r, b; f) = S(r, f).

Therefore

N(r, b; f) = Nn+1)(r, b; f) +N (n+2(r, b; f)

= S(r, f),

which is a contradiction. Therefore, there exists a p ∈ {2, 3, . . . , n + 1} such
that ϕ(z) + pγ(z) ≡ 0. Then from (3.9), we get(

1− 1

p

)
f (1) − α

f − b
− f (2)

f (1) − α
+
ϕ(1)

ϕ
− L(1) − α

L− a
+
f (1) − α

f − a
= 0.
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Integrating and using the definition of ϕ,

(f − L)p = c2(f − b)(L− a)p,(3.12)

where c2 is a nonzero constant.
Suppose that N(r, b; f) = S(r, f). Since f and L share (a, 1)∗, we have

N(r, a;L) = S(r, f) = S(r, L). So, f and L share the value a CM∗. Then by
Theorem 1.11, there exists an entire function δ such that f = b+(a−b)(eδ−1)2.

Hence f − a = (a− b)eδ(eδ − 2) and so

N(r, a; f) = N(r, 2; eδ) + S(r, eδ)

= T (r, eδ) + S(r, eδ)

=
1

2
T (r, f) + S(r, f),

which is a contradiction. Therefore, N(r, a; f) ̸= S(r, f).
Let z4 be an a-point of f and L with respective multiplicities q and s.

From (3.12), we see that s ≤ q. We suppose that s < q. From (3.12), c2 =
(−1)p/(a− b). So again from (3.12), we get

f = b+ (−1)p(a− b)(h− 1)p,(3.13)

and

L = b+
(a− b)(h− 1)

h
[(−1)p(h− 1)p−1 + 1],

where h = f−a
L−a . Since f is an entire function, from (3.13), we see that h is also

entire. Also, (3.13) implies that

pT (r, h) = T (r, f) + S(r, f).

Further, we see that N(r, 0;h) ≤ N (2(r, a; f) + S(r, f) = S(r, f) = S(r, h).

Therefore, by the Second Fundamental Theorem, N(r, d;h) ̸= S(r, f) for a
complex number d(̸= 0,∞) with (−1)p(d− 1)p−1 +1 = 0. Since f and L share
(b, 0)∗, we must have p = 2. Hence f − a = (a − b)h(h − 2) and L − a =
(a − b)(h − 2). Since z4 is a common zero of f − a and L − a, we have s = q,
which is a contradiction to the supposition. Therefore, f and L share (a,∞)∗.
Now we achieve the result by Theorem 1.11. This proves the theorem. □
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