ESTIMATES FOR CERTAIN SHIFTED CONVOLUTION SUMS INVOLVING HECKE EIGENVALUES

Guodong Hua

Abstract

In this paper, we obtain certain estimates for averages of shifted convolution sums involving Hecke eigenvalues of classical holomorphic cusp forms. This generalizes some results of Lü and Wang in this direction.

1. Introduction

The Fourier coefficients of automorphic forms are interesting and important research objects in modern number theory. Let H_{k} be the set of normalized primitive holomorphic cusp forms of even integral weight k for the full modular group $\Gamma=S L(2, \mathbb{Z})$, which consists of the eigenfunctions for the all Hecke operators T_{n}. The Fourier coefficients of $f \in H_{k}$ at the cusp infinity admit the Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{\frac{k-1}{2}} e^{2 \pi i n z}
$$

where we normalize $\lambda_{f}(1)=1$ and $\lambda_{f}(n) \in \mathbb{R}$ is the nth normalized Fourier coefficient (Hecke eigenvalue) of f. It is well-known that the Hecke eigenvalue $\lambda_{f}(n)$ satisfies the Hecke relation

$$
\lambda_{f}(n) \lambda_{f}(m)=\sum_{d \mid(m, n)} \lambda_{f}\left(\frac{m n}{d^{2}}\right)
$$

for all integers $m, n \geq 1$. In 1974, P. Deligne [4] proved the celebrated Ramanu-jan-Petersson conjecture which asserts that

$$
\begin{equation*}
\left|\lambda_{f}(n)\right| \leq d(n), \tag{1}
\end{equation*}
$$

[^0]where $d(n)$ is the classical divisor function. Then the result (1) implies that for any prime number p, there exist two complex numbers $\alpha_{f}(p), \beta_{f}(p)$ such that
\[

$$
\begin{equation*}
\lambda_{f}(p)=\alpha_{f}(p)+\beta_{f}(p), \quad\left|\alpha_{f}(p)\right|=\left|\beta_{f}(p)\right|=\alpha_{f}(p) \beta_{f}(p)=1 \tag{2}
\end{equation*}
$$

\]

The Hecke L-function associated to $f(z)$ is defined by

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{n^{s}}=\prod_{p}\left(1-\frac{\alpha_{f}(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta_{f}(p)}{p^{s}}\right)^{-1}, \Re(s)>1
$$

where the local parameters $\alpha_{f}(p), \beta_{f}(p)$ are given by (2).
The nontrivial bounds of various shifted convolution sums played important roles in the modern analytic number theory (see e.g. [14, 16, 23]). Define

$$
\lambda_{j, f}(n):=\sum_{n_{1} \cdots n_{j}=n} \lambda_{f}\left(n_{1}\right) \cdots \lambda_{f}\left(n_{j}\right)
$$

for any fixed integer $j \geq 1$. Then it is not hard to find the associated L-function of $\lambda_{j, f}(n)$ that

$$
L(f, s)^{j}=\sum_{n=1}^{\infty} \frac{\lambda_{j, f}(n)}{n^{s}}, \quad \Re(s)>1
$$

In 2019, Lü and Wang [15] considered the average estimates of shifted convolution sums involving $\lambda_{j, f}(n)$ and proved that

$$
\begin{aligned}
& \sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{2, f}(n) \lambda_{2, f}(n+h) \ll N^{\frac{6}{5}+\varepsilon} H^{\frac{2}{5}}, \quad N^{\frac{1}{3}} \leq H \leq N^{1-\varepsilon}, \\
& \sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{3, f}(n) \lambda_{3, f}(n+h) \ll N^{\frac{4}{3}+\varepsilon} H^{\frac{1}{3}}, \quad N^{\frac{1}{2}} \leq H \leq N^{1-\varepsilon},
\end{aligned}
$$

and for $j \geq 4$

$$
\sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{j, f}(n) \lambda_{j, f}(n+h) \ll N^{\frac{4 j+1}{2 j+4}+\varepsilon} H^{\frac{2}{j+2}}, N^{\frac{2 j-3}{2 j}} \leq H \leq N^{1-\varepsilon}
$$

for any given $\varepsilon>0$. In fact, as remarked below Theorem 1.1 in Lü and Wang [15], Corollary 1.2 in Lü [14] can give the corresponding weaker results of the above results.

We define

$$
\begin{equation*}
\lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n):=\sum_{n_{1} \cdots n_{j}=n} \lambda_{f}\left(n_{1}^{i_{1}}\right) \cdots \lambda_{f}\left(n_{j}^{i_{j}}\right) \tag{3}
\end{equation*}
$$

for the integers $j \geq 2$ and $i_{1}, \ldots, i_{j} \geq 1$. In this paper, we are interested in the average estimates for shifted convolution sums of the type

$$
\sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n+h)
$$

More precisely, we will be able to prove the following results.

Theorem 1.1. Assume that $1 \leq H \leq N$, and $\lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)$ is defined by (3). Then for any $\varepsilon>0$ we have

$$
\begin{aligned}
& \sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n+h) \\
\ll & N^{2-\frac{4}{A_{j, i_{1}, \ldots, i_{j}+2}}} H^{\overline{A_{j, i_{1}, \ldots, i_{j}+2}}}, N^{1-\frac{2}{A_{j, i_{1}, \ldots, i_{j}}}} \leq H \leq N^{1-\varepsilon},
\end{aligned}
$$

where $A_{j, i_{1}, \ldots, i_{j}}$ is given by

$$
A_{j, i_{1}, \ldots, i_{j}}=\sum_{l=1}^{j}\left(i_{l}+1\right)
$$

Let $g \in H_{r}$ be another distinct Hecke eigenform. Define

$$
\begin{equation*}
\lambda_{j, f, g}^{i_{1}, \ldots, i_{j}}(n):=\sum_{n_{1} \cdots n_{j}=n} \lambda_{f \times g}\left(n_{1}^{i_{1}}\right) \cdots \lambda_{f \times g}\left(n_{j}^{i_{j}}\right) \tag{4}
\end{equation*}
$$

for $j \geq 2$ and $i_{1}, \ldots, i_{j} \geq 1$, where $\lambda_{f \times g}(n)$ is the nth normalized coefficient of the Dirichlet expansion of the associated Rankin-Selberg L-function $L(f \times g, s)$ attached to f and g. Using the similar method as in the proof of Theorem 1.1, we can also establish the following theorem.
Theorem 1.2. Let $f \in H_{k}$ and $g \in H_{r}$ be two distinct Hecke eigenforms. Assume that $1 \leq H \leq N$, and $\lambda_{j, f, g}^{i_{1}, \ldots, i_{j}}(n)$ is defined by (4). Then for any $\varepsilon>0$ we have

$$
\begin{aligned}
& \sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{j, f \times g}^{i_{1}, \ldots, i_{j}}(n) \lambda_{j, f \times g}^{i_{1}, \ldots, i_{j}}(n+h) \\
\ll & N^{2-\frac{4}{B_{j, i_{1}, \ldots, i_{j}+2}^{+2}}} H^{\overline{B_{j, i_{1}, \ldots, i_{j}+2}}}, N^{1-\frac{2}{B_{j, i_{1}, \ldots, i_{j}}}} \leq H \leq N^{1-\varepsilon},
\end{aligned}
$$

where $B_{j, i_{1}, \ldots, i_{j}}$ is given by

$$
B_{j, i_{1}, \ldots, i_{j}}=\sum_{l=1}^{j}\left(i_{l}+1\right)^{2}
$$

The proofs of Theorem 1.1 and Theorem 1.2 are based on a series of vital works of Gelbart and Jacquet [6], Kim and Shahidi [10-12], Dieulefait [5], Clozel and Thorne $[1-3]$, and Newton and Thorne $[17,18]$ that the automorphy of all symmetric powers for cuspidal Hecke eigenforms of level 1 and weight $k \geq 2$. And we will also use the well-known Perron's formula and the individual or average convexity bounds of the associated L-function in the proof of the main results in this paper.

2. Auxiliary results

In this section, we review some relevant facts of the symmetric power L functions and collect some important lemmas which play an important role in the proof of the main results in this paper.

Let $f \in H_{k}$ be a Hecke eigenform. Then we can define the j th symmetric power L-function attached to f by

$$
\begin{equation*}
L\left(\operatorname{sym}^{j} f, s\right):=\prod_{p} \prod_{m=0}^{j}\left(1-\frac{\alpha_{f}(p)^{j-m} \beta_{f}(p)^{m}}{p^{s}}\right)^{-1} \tag{5}
\end{equation*}
$$

for $\Re(s)>1$. We can rewrite it as a Dirichlet series

$$
\begin{align*}
L\left(\operatorname{sym}^{j} f, s\right) & =\prod_{p}\left(1+\frac{\lambda_{\operatorname{sym}^{j} f}(p)}{p^{s}}+\cdots+\frac{\lambda_{\operatorname{sym}^{j} f}\left(p^{k}\right)}{p^{k s}}+\cdots\right) \\
& =: \sum_{n=1}^{\infty} \frac{\lambda_{\operatorname{sym}^{j} f}(n)}{n^{s}}, \Re(s)>1 \tag{6}
\end{align*}
$$

It is well-known that $\lambda_{\operatorname{sym}^{j} f}(n)$ is a real multiplicative function. And from (2), (5), (6) and the Hecke operator theory, we have

$$
\begin{equation*}
\lambda_{f}\left(p^{j}\right)=\sum_{m=0}^{j} \alpha_{f}(p)^{j-2 m}=\lambda_{\text {sym }^{j} f}(p), j \geq 1 \tag{7}
\end{equation*}
$$

Let $g \in H_{r}$ be another distinct Hecke eigenform. Then the Rankin-Selberg L-function attached to $\operatorname{sym}^{i} f$ and $\operatorname{sym}^{j} g$ is defined by

$$
L\left(\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g, s\right)
$$

$$
\begin{equation*}
:=\prod_{p} \prod_{m=0}^{i} \prod_{m^{\prime}=0}^{j}\left(1-\alpha_{f}(p)^{i-2 m} \alpha_{g}(p)^{j-2 m^{\prime}} p^{-s}\right)^{-1} \tag{8}
\end{equation*}
$$

for $\Re(s)>1$. Similarly, it can also be expressed as a Dirichlet series

$$
\begin{align*}
L\left(\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g, s\right) & =\prod_{p}\left(1+\sum_{k \geq 1} \frac{\lambda_{\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g}\left(p^{k}\right)}{p^{k s}}\right) \\
& =\sum_{n=1}^{\infty} \frac{\lambda_{\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g}(n)}{n^{s}} \tag{9}
\end{align*}
$$

for $\Re(s)>1$, where $\lambda_{\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g}(n)$ is a real multiplicative function. From (7)-(16), we have

$$
\begin{align*}
\lambda_{\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g}(p) & =\sum_{m=0}^{i} \sum_{m^{\prime}=0}^{j} \alpha_{f}(p)^{i-2 m} \alpha_{g}(p)^{j-2 m^{\prime}} \\
& =\lambda_{\operatorname{sym}^{i} f}(p) \lambda_{\operatorname{sym}^{j} g}(p) \tag{10}
\end{align*}
$$

Lemma 2.1. Let $f(s)=\sum_{n \geq 1} a_{n} n^{-s}$ be a Dirichlet series which converges absolutely for $\Re(s)>1$. And $\left|a_{n}\right| \leq A(n)$, where $A(n)$ is a positive monotonically increasing function of n and

$$
\sum_{n \geq 1}\left|a_{n}\right| n^{-\sigma}=O\left((\sigma-1)^{-\alpha}\right)
$$

for some $\alpha>0$ as $\sigma \rightarrow 1^{+}$. Then we have

$$
\sum_{n \leq x} a_{n}=\frac{1}{2 \pi i} \int_{b-i T}^{b+i T} f(s) \frac{x^{s}}{s} d s+O\left(\frac{x^{b}}{T(b-1)^{\alpha}}\right)+O\left(\frac{x A(2 x) \log x}{T}\right)
$$

for any $b>1,1<b \leq b_{0}, T \geq 2$, the constants in O-symbols depend on b_{0}.
Proof. See Karatsuba and Voronin [9, pp. 334-336].
Let π_{f} and π_{g} be two automorphic cuspidal automorphic representations of $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$. It is well-known that an automorphic cuspidal representation π of $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ is associated to a primitive form f, and hence an automorphic function $L\left(\pi_{f}, s\right)$ coincides with $L(f, s)$. Denote by $\operatorname{sym}^{j} \pi_{f}$ the j th symmetric power lift of π_{f}. For $2 \leq j \leq 8$, the automorphy of $\operatorname{sym}^{j} \pi_{f}$ was proved by a series of important works of Gelbart and Jacquet [6], Kim and Shahidi [10-12], Dieulefait [5], and Clozel and Thorne [1-3]. Very recently, Newton and Thorne [17, Theorem B], [18, Theorem A] showed that there exists a cuspidal automorphy representation of $G L_{j+1}\left(\mathbb{A}_{\mathbb{Q}}\right)$ whose L-function equals $L\left(\operatorname{sym}^{j} f, s\right)$ for all $j \geq 1$. Hence for $j \geq 1$, the L-function $L\left(\operatorname{sym}^{j} f, s\right)$ is an entire function and satisfies a functional equation of certain Riemann zeta-type with degree $j+1$. Furthermore, based on the works of Jacquet-Shalika [7,8], Shahidi [21,22], RudnickSarnak [20], Lau-Wu [13], the L-function $L\left(\mathrm{sym}^{i} f \times \operatorname{sym}^{j} g, s\right)$ is an entire function (except possibly for simple poles at $s=0,1$ when $\operatorname{sym}^{i} \pi_{f} \cong \operatorname{sym}^{j} \pi_{g}$) and satisfies a certain Riemann zeta-type function equation with degree $(i+1)(j+1)$.

Lemma 2.2. Let $f \in H_{k}$ be a Hecke eigenform. Let $\lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)$ defined by (3) for $j \geq 2, i_{1}, \ldots, i_{j} \geq 1$ and define

$$
L_{j, i_{1}, i_{2}, \ldots, i_{j}}(s):=\sum_{n=1}^{\infty} \frac{\lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)}{n^{s}}, \Re(s)>1
$$

Then we have

$$
L_{j, i_{1}, i_{2}, \ldots, i_{j}}(s)=L\left(s y m^{i_{1}} f, s\right) L\left(s y m^{i_{2}} f, s\right) \cdots L\left(s y m^{i_{j}} f, s\right) U_{j, i_{1}, i_{2}, \ldots, i_{j}}(s),
$$

where the function $U_{j, i_{1}, i_{2}, \ldots, i_{j}}(s)$ admits a Dirichlet series which converges uniformly and absolutely in the half-plane $\Re(s) \geq \frac{1}{2}+\varepsilon$ for any $\varepsilon>0$.

Proof. By (7), it is not hard to find for $\Re(s)>1$ we have

$$
L_{i}(s):=\sum_{n=1}^{\infty} \frac{\lambda_{f}\left(n^{i}\right)}{n^{s}}=L\left(\operatorname{sym}^{i} f, s\right) \times \prod_{p}\left(1+\frac{\lambda_{f}\left(p^{2 i}\right)-\lambda_{\operatorname{sym}^{i}}\left(p^{2}\right)}{p^{2 s}}+\cdots\right)
$$

By Deligne's bound (2), we know that

$$
U_{i}(s):=\prod_{p}\left(1+\frac{\lambda_{f}\left(p^{2 i}\right)-\lambda_{\operatorname{sym}^{i}}\left(p^{2}\right)}{p^{2 s}}+\cdots\right)
$$

admits a Dirichlet series which converges absolutely and uniformly in the halfplane $\Re(s) \geq \frac{1}{2}+\varepsilon$ for any $\varepsilon>0$. Hence the results follow from the Dirichlet convolution of the Dirichlet series of L-functions $L_{i_{l}}(s)$ with $l=1,2, \ldots, j$.
Lemma 2.3. Let $f \in H_{k}$ be a Hecke eigenform. Let $\lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)$ defined by (4) for $j \geq 2, i_{1}, \ldots, i_{j} \geq 1$ and define

$$
L_{j, i_{1}, i_{2}, \ldots, i_{j}}^{*}(s):=\sum_{n=1}^{\infty} \frac{\lambda_{j, f \times g}^{i_{1}, \ldots, i_{j}}(n)}{n^{s}}, \Re(s)>1
$$

Then we have

$$
\begin{aligned}
L_{j, i_{1}, i_{2}, \ldots, i_{j}}^{*}(s)= & L\left(s y m^{i_{1}} f \times \operatorname{sym}^{i_{1}} g, s\right) L\left(s y m^{i_{2}} f \times \operatorname{sym}^{i_{2}} g, s\right) \\
& \times \cdots \times L\left(\operatorname{sym}^{i_{j}} f \times \operatorname{sym}^{i_{j}} g, s\right) U_{j, i_{1}, i_{2}, \ldots, i_{j}}^{*}(s),
\end{aligned}
$$

where the function $U_{j, i_{1}, i_{2}, \ldots, i_{j}}^{*}(s)$ admits a Dirichlet series which converges uniformly and absolutely in the half-plane $\Re(s) \geq \frac{1}{2}+\varepsilon$ for any $\varepsilon>0$.

Proof. The proof is analogue to the proof of Lemma 2.2 by noting the relation (10).

From above we observe that $L\left(\operatorname{sym}^{j} f, s\right), L\left(\operatorname{sym}^{i} f \times \operatorname{sym}^{j} g, s\right),(i, j \geq 1)$ are general L-functions in the sense of Perelli [19]. For general L-functions, we have the following average or individual convexity bounds.
Lemma 2.4. Suppose that $\mathfrak{L}(s)$ is a general L-function of degree m. Then for any $\varepsilon>0$, we have

$$
\begin{equation*}
\int_{T}^{2 T}|\mathfrak{L}(\sigma+i t)|^{2} d t \ll T^{m(1-\sigma)+\varepsilon} \tag{11}
\end{equation*}
$$

uniformly for $\frac{1}{2} \leq \sigma \leq 1$ and $T \geq 1$, and

$$
\begin{equation*}
\mathfrak{L}(\sigma+i t) \ll(1+|t|)^{\max \left\{\frac{m}{2}(1-\sigma), 0\right\}+\varepsilon} \tag{12}
\end{equation*}
$$

uniformly for $\frac{1}{2} \leq \sigma \leq 1+\varepsilon$ and $|t| \geq 1$.
Proof. The results follow from Perelli's mean value theorem and convexity bound for the general L-function in [19].

3. Proofs of Theorem 1.1 and Theorem 1.2

In this section, we shall give the proof of Theorem 1.1 in details, and Theorem 1.2 can be handled by the similar approaches.

Define

$$
S_{j, i_{1}, \ldots, i_{j}}(N, H)=\sum_{h \leq H} \sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n+h) .
$$

By interchanging the order of summation, we get

$$
\begin{equation*}
S_{j, i_{1}, \ldots, i_{j}}(N, H)=\sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) \sum_{h \leq H} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n+h) . \tag{13}
\end{equation*}
$$

By Lemma 2.1, the inner sum in (13) can be expressed in the form

$$
\begin{align*}
& \sum_{h \leq H} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n+h) \\
= & \frac{1}{2 \pi i} \int_{\eta-i T}^{\eta+i T} L_{j, i_{1}, \ldots, i_{j}}(s)\left((n+H)^{s}-n^{s}\right) \frac{d s}{s}+O\left(\frac{N^{1+\varepsilon}}{T}\right), \tag{14}
\end{align*}
$$

where $\eta=1+\varepsilon$ and $2 \leq T \leq N$ is a parameter to be chosen later. Next we shift the line of integration to the parallel segment with $\Re(s)=\frac{1}{2}+\varepsilon$ and apply Cauchy residue theorem to get

$$
\begin{aligned}
& \sum_{h \leq H} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n+h) \\
= & \frac{1}{2 \pi i}\left\{\int_{\kappa-i T}^{\kappa+i T}+\int_{\kappa+i T}^{\eta+i T}+\int_{\eta-i T}^{\kappa-i T}\right\} L_{j, i_{1}, \ldots, i_{j}}(s)\left((n+H)^{s}-n^{s}\right) \frac{d s}{s} \\
& +O\left(\frac{N^{1+\varepsilon}}{T}\right) \\
(15):= & J_{1}+J_{2}+J_{3}+O\left(\frac{N^{1+\varepsilon}}{T}\right),
\end{aligned}
$$

where $\kappa=\frac{1}{2}+\varepsilon$.
By applying the convexity bound (12), the integrals over the horizontal segments J_{2}, J_{3} can be estimated as

$$
\begin{align*}
J_{2}+J_{3} & \ll \int_{\kappa}^{\eta}\left|L_{j, i_{1}, \ldots, i_{j}}(s)\right| \frac{N^{\sigma}}{T} d \sigma \\
& \ll \max _{\kappa \leq \sigma \leq \eta} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{2}}{2}}(1-\sigma)+\varepsilon \\
N^{\sigma} & T^{-1} \\
& \ll \frac{N^{1+\varepsilon}}{T}+N^{\frac{1}{2}} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{4}}{4}-1} \tag{16}\\
& \ll \frac{N^{1+\varepsilon}}{T}
\end{align*}
$$

provided $N^{\frac{1}{2}} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{4}}{4}}-1 \leq \frac{N^{1+\varepsilon}}{T}$, that is to say the first term dominated, i.e., $T \leq N^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}}}}$. Here we note $L_{j, i_{1}, \ldots, i_{j}}(s)$ is an L-function of degree $A_{j, i_{1}, \ldots, i_{j}}$ given by

$$
A_{j, i_{1}, \ldots, i_{j}}:=\sum_{l=1}^{j}\left(i_{l}+1\right) .
$$

Combining (13)-(16), we obtain

$$
\begin{aligned}
& S_{j, i_{1}, \ldots, i_{j}}(N, H) \\
= & \sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)\left\{\frac{1}{2 \pi i} \int_{\kappa-i T}^{\kappa+i T} L_{j, i_{1}, \ldots, i_{j}}(s)\left((n+H)^{s}-n^{s}\right) \frac{d s}{s}\right\}
\end{aligned}
$$

$$
\begin{array}{r}
+O\left(\sum_{N<n \leq 2 N}\left|\lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)\right| \frac{N^{1+\varepsilon}}{T}\right) \\
(17) \quad:=R_{j, i_{1}, \ldots, i_{j}}(N, H)+O\left(\frac{N^{2+\varepsilon}}{T}\right),
\end{array}
$$

where

$$
\begin{align*}
& R_{j, i_{1}, \ldots, i_{j}}(N, H) \\
= & \frac{1}{2 \pi i} \int_{\kappa-i T}^{\kappa+i T} L_{j, i_{1}, \ldots, i_{j}}(s)\left(\sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)\left((n+H)^{s}-n^{s}\right)\right) \frac{d s}{s} . \tag{18}
\end{align*}
$$

Applying partial summation formula (see e.g. [9, Appendix,Theorem 1]) to the inner sum in (18), we get

$$
\begin{aligned}
& \sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n)\left((n+H)^{s}-n^{s}\right) \\
= & \sum_{N<n \leq 2 N}\left(\left(1+\frac{H}{n}\right)^{s}-1\right) \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{s} \\
= & \left(\left(1+\frac{H}{2 N}\right)^{s}-1\right) \sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{s} \\
& +s H \int_{N}^{2 N}\left(1+\frac{H}{x}\right)^{s-1}\left(\sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{s}\right) \frac{d x}{x^{2}} .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
R_{j, i_{1}, \ldots, i_{j}}(N, H)=R_{j, i_{1}, \ldots, i_{j}}^{1}(N, H)+R_{j, i_{1}, \ldots, i_{j}}^{2}(N, H), \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{j, i_{1}, \ldots, i_{j}}^{1}(N, H) \\
= & \frac{1}{2 \pi i} \int_{\kappa-i T}^{\kappa+i T} L_{j, i_{1}, \ldots, i_{j}}(s)\left(\left(1+\frac{H}{2 N}\right)^{s}-1\right)\left(\sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{s}\right) \frac{d s}{s} \\
= & \frac{1}{4 \pi i N} \int_{0}^{H} \int_{\kappa-i T}^{\kappa+i T} L_{j, i_{1}, \ldots, i_{j}}(s)\left(1+\frac{\theta}{2 N}\right)^{s-1}
\end{aligned}
$$

(20) $\times\left(\sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{s}\right) d s d \theta$,
and

$$
R_{j, i_{1}, \ldots, i_{j}}^{2}(N, H)=\frac{H}{2 \pi i} \int_{N}^{2 N} \int_{\kappa-i T}^{\kappa+i T} L_{j, i_{1}, \ldots, i_{j}}(s)\left(1+\frac{H}{x}\right)^{s-1}
$$

$$
\begin{equation*}
\times\left(\sum_{N<n \leq 2 N} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{s}\right) \frac{d s d x}{x^{2}} . \tag{21}
\end{equation*}
$$

For $i=1,2$, we get

$$
\begin{align*}
& R_{j, i_{1}, \ldots, i_{j}}^{i}(N, H) \\
\ll & \frac{H}{N} \sup _{N<x \leq 2 N} \int_{-T}^{T}\left|L_{j, i_{1}, \ldots, i_{j}}\left(\frac{1}{2}+i t\right)\right|\left|\sum_{N<n \leq x} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{\frac{1}{2}+i t}\right| d t . \tag{22}
\end{align*}
$$

By Lemma 2.1, we obtain

$$
\begin{aligned}
& \sum_{N<n \leq x} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{\frac{1}{2}+i t} \\
= & \frac{2}{2 \pi i} \int_{\frac{3}{2}+\varepsilon+i T}^{\frac{3}{2}+\varepsilon-i T} L_{j, i_{1}, \ldots, i_{j}}\left(w-\left(\frac{1}{2}+i t\right)\right)\left(x^{w}-N^{w}\right) \frac{d w}{w}+O\left(\frac{N^{\frac{3}{2}+\varepsilon}}{T}\right),
\end{aligned}
$$

where $|t| \leq T$ and $2 \leq T \leq N$ is a parameter to be chosen later.
By shifting the line of integration to the parallel segment with $\Re(w)=1$ and applying the Cauchy residue theorem, we get

$$
\begin{aligned}
& \sum_{N<n \leq x} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{\frac{1}{2}+i t} \\
= & \frac{1}{2 \pi i}\left\{\int_{1-2 i T}^{1+2 i T}+\int_{1+2 i T}^{\frac{3}{2}+\varepsilon+2 i T}+\int_{\frac{3}{2}+\varepsilon-2 i T}^{1-2 i T}\right\} L_{j, i_{1}, \ldots, i_{j}}\left(w-\left(\frac{1}{2}+i t\right)\right) \\
& \times\left(x^{w}-N^{w}\right) \frac{d w}{w}+O\left(\frac{N^{\frac{3}{2}+\varepsilon}}{T}\right) \\
:= & I_{1}+I_{2}+I_{3}+O\left(\frac{N^{\frac{3}{2}+\varepsilon}}{T}\right) .
\end{aligned}
$$

For the integral over the horizontal segments, by the subconvexity bound (12), we obtain

$$
\begin{align*}
I_{2}+I_{3} & \ll \int_{1}^{\frac{3}{2}+\varepsilon}\left|L_{j, i_{1}, \ldots, i_{j}}\left(w-\left(\frac{1}{2}+i t\right)\right)\right| \frac{N^{\sigma}}{T} d \sigma \\
& \ll \max _{1 \leq \sigma \leq \frac{3}{2}+\varepsilon} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{2}}{2}\left(\frac{3}{2}-\sigma\right)} N^{\sigma} T^{-1} \\
& \ll T^{\frac{A_{j, i_{1}, \ldots, i_{l}}^{4}}{4}-1} N+N^{\frac{3}{2}+\varepsilon} T^{-1} \ll N^{\frac{3}{2}+\varepsilon} T^{-1} \tag{23}
\end{align*}
$$

provided $T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{4}}{4}-1} N \leq N^{\frac{3}{2}+\varepsilon} T^{-1}$, i.e., $T \leq N^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}}}}$.
Hence we have

$$
\begin{aligned}
& \sum_{N<n \leq x} \lambda_{j, f}^{i_{1}, \ldots, i_{j}}(n) n^{\frac{1}{2}+i t} \\
(24)= & \frac{1}{2 \pi i} \int_{1-2 i T}^{1+2 i T} L_{j, i_{1}, \ldots, i_{j}}\left(w-\left(\frac{1}{2}+i t\right)\right)\left(x^{w}-N^{w}\right) \frac{d w}{w}+O\left(\frac{N^{\frac{3}{2}+\varepsilon}}{T}\right) .
\end{aligned}
$$

Substituting (24) to (22), we have

$$
\begin{align*}
& R_{j, i_{1}, \ldots, i_{j}}^{i}(N, H) \\
\ll & \frac{H}{N} \sup _{N<x \leq 2 N} \int_{-T}^{T}\left|L_{j, i_{1}, \ldots, i_{j}}\left(\frac{1}{2}+i t\right)\right| \\
& \times\left|\left\{\frac{1}{2 \pi i} \int_{1-2 i T}^{1+2 i T} L_{j, i_{1}, \ldots, i_{j}}\left(w-\left(\frac{1}{2}+i t\right)\right)\left(x^{w}-N^{w}\right) \frac{d w}{w}\right\}\right| d t \\
& +\frac{H}{N} \int_{-T}^{T}\left|L_{j, i_{1}, \ldots, i_{j}}\left(\frac{1}{2}+i t\right)\right| \frac{N^{\frac{3}{2}+\varepsilon}}{T} d t \\
:= & A_{j, i_{1}, \ldots, i_{j}}(N, H)+B_{j, i_{1}, \ldots, i_{j}}(N, H) . \tag{25}
\end{align*}
$$

Using (11) and the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
& A_{j, i_{1}, \ldots, i_{j}}(N, H) \\
\ll & H \int_{-2 T}^{2 T}\left(\int_{-T}^{T}\left|L_{j, i_{1}, \ldots, i_{j}}\left(\frac{1}{2}+i t\right)\right|^{2} d t\right)^{\frac{1}{2}} \\
& \times\left(\int_{-T}^{T}\left|L_{j, i_{1}, \ldots, i_{j}}\left(\frac{1}{2}+i t\right)\right|^{2} d t\right)^{\frac{1}{2}} \frac{d t_{1}}{1+\left|t_{1}\right|} \\
\ll & H \int_{-2 T}^{2 T} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{2}}{2}} \frac{d t_{1}}{1+\left|t_{1}\right|} \ll H T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{2}}{2}+\varepsilon} . \tag{26}
\end{align*}
$$

For $B_{j, i_{1}, \ldots, i_{j}}(N, H)$, by the Cauchy-Schwarz inequality and (11), we obtain

$$
\begin{align*}
B_{j, i_{1}, \ldots, i_{j}}(N, H) & \ll \frac{H N^{\frac{1}{2}+\varepsilon}}{T} T^{\frac{1}{2}}\left(\int_{-T}^{T}\left|L_{j, i_{1}, \ldots, i_{j}}\left(\frac{1}{2}+i t\right)\right|^{2} d t\right)^{\frac{1}{2}} \\
& \ll H N^{\frac{1}{2}+\varepsilon} T^{-\frac{1}{2}} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}}{4}} \tag{27}
\end{align*}
$$

Combining $(17),(19),(22),(25),(26)$ and (27), we obtain

$$
S_{j, i_{1}, \ldots, i_{j}}(N, H) \ll \frac{N^{2+\varepsilon}}{T}+H T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{2}}{2} \varepsilon}+H N^{\frac{1}{2}+\varepsilon} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{4}}{4}-\frac{1}{2}+\varepsilon}
$$

Now we choose T such that $H N^{\frac{1}{2}+\varepsilon} T^{\frac{A_{j, i_{1}, \ldots, i_{j}}}{4}-\frac{1}{2}+\varepsilon} \leq H T^{\frac{A_{j, i_{1}, \ldots, i_{j}}^{2}}{2}+\varepsilon}$, i.e., $T \geq N^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}+2}}}$, then

$$
S_{j, i_{1}, \ldots, i_{j}}(N, H) \ll \frac{N^{2+\varepsilon}}{T}+H T^{\frac{A_{j, i_{1}, \ldots, i_{j}}}{2}+\varepsilon}
$$

On taking $T=\left(\frac{N^{2}}{H}\right)^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}+2}}}$, then

$$
S_{j, i_{1}, \ldots, i_{j}}(N, H) \ll N^{2-\frac{4}{A_{j, i_{1}, \ldots, i_{j}+2}}} H^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}+2}}}
$$

For $N^{1-\frac{2}{A_{j, i_{1}, \ldots, i_{j}}}} \leq H \leq N^{1-\varepsilon}, T=\left(\frac{N^{2}}{H}\right)^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}+2}}}$ satisfies the restriction $N^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}+2}}} \leq T \leq N^{\frac{2}{A_{j, i_{1}, \ldots, i_{j}}}}$, and obviously it improves the trivial bound $N^{1+\varepsilon} H$.

This completes the proof of Theorem 1.1.
Acknowledgements. The author would like to express his sincere gratitude to Professor Guangshi Lü and Professor Bin Chen for their constant encouragement and valuable suggestions. The author is extremely grateful to the anonymous referees for their meticulous checking, for thoroughly reporting countless typos and inaccuracies as well as for their valuable comments. These corrections and additions have made the manuscript clearer and readable.

References

[1] L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality, I, Compos. Math. 150 (2014), no. 5, 729-748. https://doi.org/10.1112/S0010437X13007653
[2] L. Clozel and J. A. Thorne, Level raising and symmetric power functoriality, II, Ann. of Math. (2) 181 (2015), no. 1, 303-359. https://doi.org/10.4007/annals.2015.181.1.5
[3] L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality, III, Duke Math. J. 166 (2017), no. 2, 325-402. https://doi.org/10.1215/00127094-3714971
[4] P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. No. 43 (1974), 273-307.
[5] L. Dieulefait, Automorphy of $\operatorname{Symm}^{5}(\mathrm{GL}(2))$ and base change, J. Math. Pures Appl. (9) 104 (2015), no. 4, 619-656. https://doi.org/10.1016/j.matpur.2015.03.010
[6] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471-542.
[7] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499-558. https://doi.org/10. 2307/2374103
[8] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777-815. https://doi.org/10.2307/ 2374050
[9] A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, translated from the Russian by Neal Koblitz, De Gruyter Expositions in Mathematics, 5, Walter de Gruyter \& Co., Berlin, 1992. https://doi.org/10.1515/9783110886146
[10] H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL_{2}, J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. https://doi.org/10.1090/S0894-0347-02-00410-1
[11] H. H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), no. 1, 177-197. https://doi.org/10.1215/S0012-9074-02-112150
[12] H. H. Kim and F. Shahidi, Functorial products for $\mathrm{GL}_{2} \times \mathrm{GL}_{3}$ and the symmetric cube for GL_{2}, Ann. of Math. (2) 155 (2002), no. 3, 837-893. https://doi.org/10.2307/3062134
[13] Y.-K. Lau and J. Wu, A density theorem on automorphic L-functions and some applications, Trans. Amer. Math. Soc. 358 (2006), no. 1, 441-472. https://doi.org/10. 1090/S0002-9947-05-03774-8
[14] G. Lü, Exponential sums with Fourier coefficients of automorphic forms, Math. Z. 289 (2018), no. 1-2, 267-278. https://doi.org/10.1007/s00209-017-1950-8
[15] G. Lü and D. Wang, Averages of shifted convolutions of general divisor sums involving Hecke eigenvalues, J. Number Theory 199 (2019), 342-351. https://doi.org/10.1016/ j.jnt.2018.11.016
[16] R. Munshi, Shifted convolution sums for GL(3) × GL(2), Duke Math. J. 162 (2013), no. 13, 2345-2362. https://doi.org/10.1215/00127094-2371416
[17] J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes Études Sci. 134 (2021), 1-116. https://doi.org/10. 1007/s10240-021-00127-3
[18] J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. Inst. Hautes Études Sci. 134 (2021), 117-152. https://doi.org/ 10.1007/s10240-021-00126-4
[19] A. Perelli, General L-functions, Ann. Mat. Pura Appl. (4) 130 (1982), 287-306. https: //doi.org/10.1007/BF01761499
[20] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81 (1996), no. 2, 269-322. https://doi.org/10.1215/S0012-7094-96-08115-6
[21] F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), no. 2, 297-355. https: //doi.org/10.2307/2374219
[22] F. Shahidi, Third symmetric power L-functions for GL(2), Compositio Math. 70 (1989), no. 3, 245-273.
[23] Q. Sun, Averages of shifted convolution sums for $G L(3) \times G L(2)$, J. Number Theory 182 (2018), 344-362. https://doi.org/10.1016/j.jnt.2017.07.005

Guodong Hua
School of Mathematics and Statistics
Weinan Normal University
Weinan 714099, P. R. China
AND
School of Mathematics
Shandong University
Jinan 250100, P. R. China
Email address: gdhuanumb@yeah.net

[^0]: Received November 4, 2021; Revised August 9, 2022; Accepted November 15, 2022.
 2020 Mathematics Subject Classification. Primary 11F30, 11F66, 11E20.
 Key words and phrases. Shifted convolution sums, holomorphic cusp form, automorphic L-function.

 This work was financially supported in part by The National Key Research and Development Program of China (Grant No. 2021YFA1000700) and Natural Science Basic Research Program of Shaanxi (Program Nos. 2023-JC-QN-0024, 2023-JC-YB-077).

