DOI QR코드

DOI QR Code

Evaluation of Ammonia Adsorption Capacity Using Various Metal Ion-Exchanged Zeolitic Materials Synthesized from Coal Fly Ash

금속 이온이 교환된 석탄 비산재 유래 합성 제올라이트 물질의 암모니아 흡착성능 평가

  • Jong-Won Park (Department of Fire and Disaster Prevention, Catholic University of Pusan) ;
  • Joo-Young Kwak (Samdoo Total Engineering) ;
  • Chang-Han Lee (Department of Environmental Adminstration, Catholic University of Pusan)
  • 박종원 (부산가톨릭대학교 소방방재학과) ;
  • 곽주영 (삼두종합기술(주) 기술연구소) ;
  • 이창한 (부산가톨릭대학교 환경행정학과)
  • Received : 2023.03.06
  • Accepted : 2023.04.14
  • Published : 2023.05.31

Abstract

A zeolite material (ZCH) was synthesized from coal fly ash in an HD thermal power plant using a fusion/hydrothermal method. ZCH with high crystallinity could be synthesized at the NaOH/CFA ratio of 0.9. Ion-exchanged ZCH adsorbents for ammonia removal were prepared by ion-exchanging various cation (Cu2+, Co2+, Fe3+, and Mn2+) on the ZCH. They were used to evaluate the ammonia adsorption breakthrough curves and adsorption capacities. The ammonia adsorption capacities of the ZCH and ion-exchanged ZCHs were high in the order of Mn-ZCH > Cu-ZCH ≅ Co-ZCH > Fe-ZCH > ZCH according to NH3-TPD measurements. Mn-ZCH ion-exchanged with Mn has more Brønsted acid sites than other adsorbents. The ion-exchanged Cu2+, Co2+, Fe3+, or Mn2+ ions uniformly distributed on the surface or in the pores of the ZCH, and the number of acidic sites increased on the alumina sites to form the crystal structure of zeolite material. Therefore, when the ion-exchanged ZCH was used, the adsorption capacity for ammonia gas increased.

Keywords

Acknowledgement

본 논문은 2021년도 부산가톨릭대학교 교내학술연구비의 지원에 의하여 수행되었습니다.

References

  1. Bandosz, T. J., Petit, C., 2009, On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds, J. Colloid Interface Sci., 338(2), 329-345.  https://doi.org/10.1016/j.jcis.2009.06.039
  2. Bernal, M. P., Lopez-Real, J. M., 1993, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials, Bioresour. Technol., 43, 27-33.  https://doi.org/10.1016/0960-8524(93)90078-P
  3. Depla, A., Verheyen, E., Veyfeyken, A., Gobechiya, E., Hartmana, R., Schaefer, R., Martens, J. A., Kirschhock, C. E. A., 2011, Zeolites X and A crystallization compared by simultaneous UV/VISRaman and X-ray Diffraction, Phys. Chem. Chem. Phys., 13, 13730-13737.  https://doi.org/10.1039/c1cp20157c
  4. Drummond, D., Jonge, A. D., Rees, L. C., 1983, Ion-Exchange kinetics in Zeolite A, J. Phys. Chem., 87, 1967-1971.  https://doi.org/10.1021/j100234a027
  5. Gaus, H., Lutze, W., 1981, Kinetics of strontium/ barium and strontium/calcium ion exchange in synthetic zeolite A, J. Phys. Chem., 85(1), 79-84.  https://doi.org/10.1021/j150601a018
  6. Ghauri, M., Tahir, M., Abbas, T., Khurram, M. S., Shehzad, K., 2012, Adsorption studies for the removal of ammonia by thermally activated carbon. Science International, 24(4), 411-414. 
  7. Goncalves, M., Sanchez-Garcia, L., Oliveira Jardim, E. D., Silvestre-Albero, J., Rodriguez-Reinoso, F., 2011, Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45(24), 10605-10610.  https://doi.org/10.1021/es203093v
  8. Huang, C. C., Li, H. S., Chen, C. H., 2008, Effect of Surface Acidic Oxides of Activated Carbon on Adsorption of Ammonia, J. Hazard. Mater., 159 (2-3), 523-527.  https://doi.org/10.1016/j.jhazmat.2008.02.051
  9. Jorgensen, S. E., Libor, O., Lea Graber, K., Barkacs, K., 1976, Ammonia removal by use of clinoptilolite, Water Res., 10, 213-224.  https://doi.org/10.1016/0043-1354(76)90130-5
  10. Joshi, U. D., Joshi, P. N., Tamhankar, S. S., Joshi, V. V., Rode, C. V., Shiralkar, V. P., 2003, Effect of nonframework cations and crystallinity on the basicity of NaX zeolites, Appl. Catal. A, 239, 209-220.  https://doi.org/10.1016/S0926-860X(02)00391-5
  11. Khabzina, Y., Farrusseng, D., 2018, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater., 265, 143-148.  https://doi.org/10.1016/j.micromeso.2018.02.011
  12. Kim, C. G., 2016, Removal of ammonium and nitrate nitrogens from wastewater using zeolite. J. Korea Org. Resour. Recycl. Assoc., 24, 59-63.  https://doi.org/10.17137/korrae.2016.24.1.59
  13. Kim, S. S., Lee, C. H., 2012, Adsorption of SO2 by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 21(6), 687-694.  https://doi.org/10.5322/JES.2012.21.6.687
  14. Kim, S. S., Lee, C. H., Park, S. W., 2010, Adsorption analysis of VOCs of zeolite synthesized from coal fly ash in a fixed-bed adsorber, Korean Chem. Eng. Res., 48(6), 784-790. 
  15. Kim, S. T., Bae, C. H., Kim, B., Kim, H. C., 2017, PM2.5 simulations for the Seoul metropolitan area: (I) contributions of precursor emissions in the 2013 CAPSS emissions inventory, Journal of Korean Society for Atmospheric Environment, 33(2), 139-158.  https://doi.org/10.5572/KOSAE.2017.33.2.139
  16. Li, L., Wang, S., Zhu, Z., 2006, Geopolymeric adsorbents from fly ash for dye removal from aqueous solution, J. Col. Int. Sci., 300, 52-59.  https://doi.org/10.1016/j.jcis.2006.03.062
  17. Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D. J., Tay, J. H., 2013, Adsortion mechanisms of high-levels of ammonium onto natural and NaCL-modified zeolites, Sep. Purif. Technol., 103, 15-20.  https://doi.org/10.1016/j.seppur.2012.10.005
  18. Ministry of environment (MOE), 2017, Air pollution emissions statistic(in Korean).
  19. Murayama, N., Yamamoto, H., Shibata, J., 2002, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process, 64(1), 1-17.  https://doi.org/10.1016/S0301-7516(01)00046-1
  20. Myong, J. P., 2016. Health effects of particulate matter. Korean Journal of Medicine, 91(2), 106-113.  https://doi.org/10.3904/kjm.2016.91.2.106
  21. Oktavitri, N. I., Purnobasuki, H., Kuncoro, E. P., Purnamasari, I., 2017, Ammonia removal using coconut shell based adsorbent: Effect of carbonization duration and contact time, IPTEK Journal of Proceedings Series, 3(4), 26-32.  https://doi.org/10.12962/j23546026.y2017i4.3072
  22. Park, J. W., Seo, Y. J., Ryu, S. H., Kim, S. D., 2017, Ammonia adsorption capacity of zeolite X with different cations, Appl. Chem. Eng., 28(3), 355-359. 
  23. Park, J. W., Lee, C. H., 2022, Ammonia adsorption capacity and breakthrough curve of zeolitic materials synthesized from coal fly ash, J. Environ. Sci. Int., 31(10), 833-811. 
  24. Pebalan, R. T., Bertetti, F. P., 2001, Cation-exchange properties of nature zeolites, Geochemical Society, 435-518. 
  25. Rieth, A. J., Dincă, M., 2018, Controlled gas uptake in Metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140(9), 3461-3466.  https://doi.org/10.1021/jacs.8b00313
  26. Sherry, H. W., 1966, The Ion-exchange properties of zeolites. I. Univalent Ion Exchange in Synthetic Faujasite, J. Phys. Chem. 70(4), 1158-1168.  https://doi.org/10.1021/j100876a031
  27. Sherry, H. S., Walton, H. F., 1975, The ion exchange properties of zeolites, J. Phys. Chem., 71, 1457. 
  28. Somy, A., Mehrnia, M. R., Amrei, H. D., Ghanizadeh, A., Safari, M., 2009, Adsorption of carbon dioxide using impregnated activated carbon promoted by Zinc, Int. J. Greenhouse Gas Control, 3(3), 249-254.  https://doi.org/10.1016/j.ijggc.2008.10.003
  29. Tsai, F. C., Apte, M. G., Daisey, J. M., 2000, An exploratory analysis of the relationship between mortality and the chemical composition of airborne particulate matter, Inhalation Toxicology, 12(2), 121-135.  https://doi.org/10.1080/08958378.2000.11463204
  30. Wang, C. F., Li, J. S., Wang, L. J., Sun, X. Y., 2008, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155(1-2), 58-64.  https://doi.org/10.1016/j.jhazmat.2007.11.028
  31. Zyrkowski, M., Neto, R. C., Santos, L. F., Witkowski, K., 2016, Characterization of fly-ash cenospheres from coal-fired power plant unit, Fuel, 174, 49-53. https://doi.org/10.1016/j.fuel.2016.01.061