DOI QR코드

DOI QR Code

Seasonal Variation of Phytoplakton and Phylogenetic Characteristics of Cyanotoxin synthetase genes within Youngsan River in Gwangju

광주지역 영산강 내 식물플랑크톤의 계절적 변동과 남조류 독소합성유전자의 계통발생학적 특성

  • Haram Kim (Department of Environmental Research, Health & Environment Research Institute of Gwangju) ;
  • Gwangwoon Cho (Department of Environmental Research, Health & Environment Research Institute of Gwangju) ;
  • Gyeongrok Son (Department of Environmental Research, Health & Environment Research Institute of Gwangju) ;
  • Dong, Jang (Department of Environmental Research, Health & Environment Research Institute of Gwangju) ;
  • Gwangyeob Seo (Department of Environmental Research, Health & Environment Research Institute of Gwangju) ;
  • Yunhee Kim (Department of Environmental Research, Health & Environment Research Institute of Gwangju)
  • 김하람 (광주광역시보건환경연구원 환경연구부) ;
  • 조광운 (광주광역시보건환경연구원 환경연구부) ;
  • 손경록 (광주광역시보건환경연구원 환경연구부) ;
  • 장동 (광주광역시보건환경연구원 환경연구부) ;
  • 서광엽 (광주광역시보건환경연구원 환경연구부) ;
  • 김연희 (광주광역시보건환경연구원 환경연구부)
  • Received : 2023.02.16
  • Accepted : 2023.05.11
  • Published : 2023.05.31

Abstract

Cyanobacteria have been used as pollution indicator species in freshwater ecosystems, and identifying their fluctuations can be an important part about management of surface waters globally. Cyanotoxins produced by cyanobacteria are directly or indirectly a threat to human and environmental health. In order to confirm the potential risk of these cyanotoxins, the fluctuations of phytoplankton and phylogenetic analysis of cyanotoxin synthetase genes were conducted at each point in the Yeongsan River water system in Gwangju from November 2021 to October 2022. Diatoms which grow well in winter were dominant at 99.4 ~ 99.5%, and diatoms and green algae were dominant from the spring to autumn when the water temperature rises. Stephanodiscus spp. were dominant at 92.7 to 97.5 % at all sites in the winter, and Aulacoseira spp., which grow in warm water temperatures, were dominant in summer and autumn. Microcystis aeruginosa was dominant at 25.2% in summer only at site 5. mcyB and anaC have been detected as cyanotoxin synthetase genes. The phylogenetic tree of anaC could be divided into two groups (Group 1 & Group 2). Group 1 contained Aphanizomenon sp. and Cuspidothrix issatschenkoi. It is combined with Aphanizomenon sp. and Cuspidothrix issatschenkoi, which are known to produce cyanotoxins.

Keywords

Acknowledgement

본 연구는 2022년 환경부 "환경분야 시험검사의 국제적 적합성 기반구축사업"과 광주광역시보건환경연구원 "연구지원 및 역량강화" 사업의 지원으로 수행하였습니다.

References

  1. Al-Tebrineh, J., Pearson, L. A., Yasar, S. A., Neilan, B. A., 2012, A Multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance, Harmful Algae, 15, 19-25. https://doi.org/10.1016/j.hal.2011.11.001
  2. Ballot, A., Scherer, P. I., Wood, S. A., 2018, Variability in the anatoxin gene clusters of Cuspidothrix issatschenkoi from Germany, New Zealand, China and Japan, PLoS ONE, 13, 1-13. https://doi.org/10.1371/journal.pone.0200774
  3. Bourke, A. T. C., Hawes, R. B., Neilson, A., Stallman, N. D., 1983, An Outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication, Toxicon, 21, 45-48. https://doi.org/10.1016/0041-0101(83)90151-4
  4. Chen, J., Song, L., Dai, J., Gan, N., Liu, Z., 2004, Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.), Toxicon, 43, 393-400. https://doi.org/10.1016/j.toxicon.2004.01.011
  5. Chen, J., Zhang, H. Q., Hu, L. B., Shi, Z. Q., 2013, Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide, Chemosphere, 93, 283-293. https://doi.org/10.1016/j.chemosphere.2013.04.079
  6. Chernova, E., Russkikh, I., Voyakina, E., Zhakovskaya, Z., 2016, Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia, Oceanol. Hydrobiol. Stud., 45, 466-484. https://doi.org/10.1515/ohs-2016-0040
  7. Chorus, I., Bartram, J., 2021, Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and managemant, 2nd, Chorus, I., Welker, M.(eds.), CRC Press., London, 163-170.
  8. Codd, G., Bell, S., Kaya, K., Ward, C., Beattie, K., Metcalf, J., 1999, Cyanobacterial toxins, exposure routes and human health, Eur. J. Phycol., 34, 405-415. https://doi.org/10.1080/09670269910001736462
  9. de Figueiredo, D. R., Azeiteiro, U. M., Esteves, S. M., Goncalves, F. J., Pereira, M. J., 2004, Microcystin-producing blooms--a serious global public health issue, Ecotoxicol. Environ. Saf., 59, 151-163. https://doi.org/10.1016/j.ecoenv.2004.04.006
  10. Dittmann, E., Christiansen, G., Borner, T., Neilan, B. A., Fastner, J., Rippka, R., 1999, Peptide synthetase genes occur in various species of cyanobacteria, In: Peschek, G. A., Loffelhardt, W., Schmetterer, G. (eds.), The Phototrophic Prokaryotes, Springer, Boston, 615-621.
  11. Elnifro, E. M., Ashshi, A. M., Cooper, R. J., Klapper, P. E., 2000, Multiplex PCR: Optimization and application in diagnostic virology, Clin. Microbiol. Rev., 13, 559-570. https://doi.org/10.1128/CMR.13.4.559
  12. Han, M. S., 2021, Intensive monitoring on the regional distribution of phytoplankton in the weir areas (iv), NIER-SP2021-298, Future Ecology Corp., Marine Environment Research Institute Corp., KRIBB, KSEIE, NIER, Incheon, Korea.
  13. Hodoki, Y., Ohbayashi, K., Kobayashi, Y., Okuda, N., Nakano, S., 2012, Detection and identification of potentially toxic cyanobacteria: Ubiquitous distribution of Microcystis aeruginosa and Cuspidothrix issatschenkoi in Japanese lakes, Harmful Algae, 16, 49-57. https://doi.org/10.1016/j.hal.2012.01.003
  14. Humbert, J. F., 2017, Handbook of cyanobacterial monitoring and cyanotoxin analysis-molecular tools for the detection of toxigenic cyanobacteria in natural ecosystems, in: Meriluoto, J., Spoof, L., Codd, G. A. (eds), John Wiley & Sons, Ltd, U.S.A., 280-283.
  15. Humbert, J. F., Quiblier, C., Gugger, M., 2010, Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species, Anal. Bioanal. Chem., 397, 1723-1732. https://doi.org/10.1007/s00216-010-3642-7
  16. Hummel, H., Fortuin, A. W., Bogaards, R. H., Meijboom, A., de Wolf, L., 1994, The effects of prolonged emersion and submersion by tidal manipulation on marine macrobenthos, Hydrobiology. 282, 219-234. https://doi.org/10.1007/978-94-011-1174-4_17
  17. Jeon, B., Han, J., Kim, S. K., Ahn, J. H., Oh, H. C., Park, H. D., 2015, An Overview of problems cyanotoxins produced by cyanobacteria and the solutions thereby, J. Korean Soc. Environ. Eng., 37, 657-667. https://doi.org/10.4491/KSEE.2015.37.12.657
  18. Jeong, B., Kim, Y., Jung, S. W., Lee, H., Shin, Y., 2014, Temporal variation and identification of a centric diatom, Stephanodiscus spp. during winter-spring blooms in the Yeongsan River, J. Ecol. Environ., 47, 273-281. https://doi.org/10.11614/KSL.2014.47.4.273
  19. Jeong, K. S., Recknagel, F., Joo, G. J., 2006, Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and the diatom Stephanodiscus hantzschii in the Nakdong River-Reservoir system (South Korea) by a recurrent artificial neural network, In: Recknagel, F. (eds), Ecological Informatics, Springer, Berlin, Heidelberg, 255-278.
  20. Kang, Y. H., Park, S. S., Lee, J. Y., Yoon, S. A., Shin, Y. N., Lim, B. J., 2020, A Study on the characteristics of algae blooms in rivers and reservoirs of Korea (iii), NIER-RP2020-292, Algae ecology research team, NIER, Incheon, Korea.
  21. Kim, M. C., La, G. H., Kim, H. W., Jeong, K. S., Kim, D. K., Joo, G. J., 2008, The effect of water temperature on proliferation of Stephanodiscus sp. in vitro from the Nakdong River, South Korea, Korean J. Limnol., 41, 26-33.
  22. Kurmayer, R., Dittmann, E., Fastner, J., Chorus, I., 2002, Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany), Microb. Ecol., 43, 107-118. https://doi.org/10.1007/s00248-001-0039-3
  23. Lee, J. H., 2020, Optimization and application of multiplex PCR method to detect genes involved in cyanotoxin synthesis, M. S. Thesis, Chungbuk National University, Cheongju, Korea.
  24. Lee, Y. Y., 2018, Yeongsangang river and Seomjingang river water management committee, final report of survey research to establish comprehensive water quality improvement measure on the Yeongsangang river, 11-1480356-000108-01, Chonnam National University Industry-Academic Cooperation Foundation, Gwangju, korea.
  25. Legrand, B., Lesobre, J., Colombet, J., Latour, D., Sabart, M., 2016, Molecular tools to detect anatoxin-a genes in aquatic ecosystems: Toward a new nested PCR-based method, Harmful Algae, 58, 16-22. https://doi.org/10.1016/j.hal.2016.07.002
  26. Machado, J., Campos, A., Vasconcelos, V., Freitas, M., 2017, Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health, Environ. Res., 153, 191-204. https://doi.org/10.1016/j.envres.2016.09.015
  27. Meissner, K. Dittmann, E., Borner, T., 1996, Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes, FEMS Microbiology Letters, 135, 295-303. https://doi.org/10.1016/0378-1097(95)00469-6
  28. Mihali, T. K., Kellmann, R., Muenchhoff, J., Barrow, K, D. Neilan, B. A., 2008, Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis, Appl. Environ. Microbiol., 74, 716-722. https://doi.org/10.1128/AEM.01988-07
  29. Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J. Davies, W., Gabrielsen, T. M., Rudi, K., Jakobsen, K. S., 2003, Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains, J. Bacteriol., 185, 2774-2785. https://doi.org/10.1128/JB.185.9.2774-2785.2003
  30. NIER, 2020, Manual for operation of algae bloom warning system, NIER-GP2020-019, Incheon Korea.
  31. Reynolds, C. S., 1984, The ecology of freshwater phytoplankton, 1st, Cambridge University Press, England, 112-120.
  32. Van de Vyver, E., Pinseel, E., Verleyen, E., Vanormelingen, P., Van Wichelen, J., Rixt de Jong, Urrutia, R., Vyverman, W., 2022, Planktonic diatom communities in temperate South-Central Chilean lakes with a focus on Asterionella formosa and the genus Aulacoseira, J. Paleolimnol, 68, 279-296. https://doi.org/10.1007/s10933-022-00247-8
  33. Yoon, M. R., Jeong, J. Y., Oh, S. E., Park, J. S., Shim, K. S., Han, S. H., Byun, J. H., Kim, T. H., Oh, J. G., 2020, Diversity and community characteristics of phytoplankton in reservoirs in Gyeonggi-do, The Report of Gyeonggi Province Institute of Health and Environment, 33, Suwon, Korea, 313-320.