DOI QR코드

DOI QR Code

Seasonal Variation of Hydraulic Gradient according to Rainfall in Unconfined Aquifer : Hyogyo-ri

자유면 대수층에서 강우량에 따른 수리경사 계절 변동 분석 : 효교리

  • Kyoung-deok Park (Institute of Environmental Geosciences, Pukyong National University) ;
  • Dong-hwan Kang (Institute of Environmental Geosciences, Pukyong National University) ;
  • Won Gi Jo (Greenhouse Gas Inventory and Research Center) ;
  • In-Kyu Shin (National Institute of Environmental Research) ;
  • Yun-Yeong Oh (National Institute of Environmental Research) ;
  • MoonSu Kim (National Institute of Environmental Research) ;
  • Hyun-Koo Kim (National Institute of Environmental Research)
  • Received : 2023.02.16
  • Accepted : 2023.04.26
  • Published : 2023.05.31

Abstract

In this study, the hydraulic gradient was calculated using the groundwater level and rainfall observed in the Hyogyo-ri area for a year, and the change in the hydraulic gradient according to the rainfall was analyzed. It was found that the groundwater level increased as the rainfall increased in all groundwater wells in the research site, and the groundwater level rise decreased as the altitude of the groundwater well increased. The hydraulic gradient in the research site ranged from 0.016 to 0.048, decreasing during rainfall and increasing after the end of the rainfall. As the rainfall increased, the groundwater level rise in the low-altitude area was more than the high-altitude area, and the hydraulic gradient decreased due to the difference in groundwater level rise according to the altitude. Through this study, it was found that the influence of rainfall is dominant for the fluctuation of the hydraulic gradient in the unconfined aquifer.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 농축산지역 지하수 중 질산성질소 수질관리 개선사업(Ⅴ)의 지원을 받아 수행하였습니다(NIER-2020-04-02-052). 본 논문은 "2021년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터 사업(2021R1A6C101A415)"의 지원을 받아 수행하였습니다.

References

  1. Abriola, L. M., Pinder, G. F., 1982, Calculation of velocity in three space dimensions from hydraulic head measurements, Groundwater, 20, 205-213. https://doi.org/10.1111/j.1745-6584.1982.tb02752.x
  2. Bosch, D. D., Sheridan, J. M., Lowrance, R. R., 1996, Hydraulic gradients and flow rates of a shallow coastal plain aquifer in a forested riparian buffer, Trans. ASAE, 39, 865-871. https://doi.org/10.13031/2013.27571
  3. Chung, S. Y., Yoo, I. K., Yoon, M. J., Kweon, H. W., Heo, S. H., 1999, Application of geostatistical methods to groundwater flow analysis in a heterogeneous anisotropic aquifer, J. Eng. Geol., 9, 147-159.
  4. Cole, B. E., Silliman., S. E., 1996, Estimating the horizontal gradient in heterogeneous, unconfined aquifers: Comparison of three-point schemes, Groundwater Monit. Remediat., 16, 84-91. https://doi.org/10.1111/j.1745-6592.1996.tb00128.x
  5. Devlin, J. F., 2003, A Spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells, Groundwater, 41, 316-320. https://doi.org/10.1111/j.1745-6584.2003.tb02600.x
  6. Devlin, J. F., McElwee, C. D., 2007, Effects of measurement error on horizontal hydraulic gradient estimates, Groundwater, 45, 62-73. https://doi.org/10.1111/j.1745-6584.2006.00249.x
  7. Devlin, J. F., 2015, HydrogeoSieveXL: an Excel-based tool to estimate hydraulic conductivity from grain-size analysis, Hydrogeol. J., 23, 837-844. https://doi.org/10.1007/s10040-015-1255-0
  8. Devlin, J. K., Schillig, P. C., 2016, Hydrogeo Estimator XL: an Excel-based tool for estmating hydraulic gradient magnitude and direction, Hydrogeol. J., 25, 867-875. https://doi.org/10.1007/s10040-016-1518-4
  9. Hahn, J. S., 1998, Groundwater Environment and Pollution, Pakyoungsa, Seoul, Korea, 1011.
  10. Hornbeck, R. W., 1975, Numerical methods, Quantum Publishers, New York, USA, 310.
  11. Kim, T. Y., Kang, D. H., Kim, S. S., Kwon, B. H., 2009, Variation characteristics of hydraulic gradient and major flow direction in the landfill soils, J. Environ. Sci. Int., 18, 315-323. https://doi.org/10.5322/JES.2009.18.3.315
  12. Marinoni, O., 2003, Improving geological models using a combined ordinary-indicator kriging approach, Eng. Geol., 69, 37-45. https://doi.org/10.1016/S0013-7952(02)00246-6
  13. Messer, T. L., Burchell II, M. R., Grabow, G. L., Osmond, D. L., 2012, Groundwater nitrate reductions within upstream and downstream sections of a riparian buffer, Ecol. Eng., 297-307.
  14. Pinder, G. F., Celia, M., Gray, W. G., 1981, Velocity calculation from randomly located hydraulic heads, Groundwater, 19, 262-264. https://doi.org/10.1111/j.1745-6584.1981.tb03468.x
  15. Silliman, S. E., Frost, C., 1998, Monitoring hydraulic gradient using three-point estimator, J Environ. Eng., 124, 517-523. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:6(517)
  16. Silliman, S. E., Mantz, G., 2005, The effect of measurement error on estimating the hydraulic gradient in three dimensions, Groundwater, 38, 114-120. https://doi.org/10.1111/j.1745-6584.2000.tb00208.x
  17. Snedecor, G. W., Cochran, W. G., 1991, Statistical methods. 8th Edition, Wiley Blackwell USA, 503.
  18. Wang, H. F., Anderson, M. P., 1982, Introduction to groundwater modeling: Finite Difference and finite element methods, Academic Press, London, UK, 237.
  19. Wilkin, R. T., Acree, S. D., Ross, R. R., Beak, D. G., Lee, T. R., 2009, Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies, J. Contam. Hydrol., 106, 1-14. https://doi.org/10.1016/j.jconhyd.2008.12.002
  20. Wilkin, R. T., Acree, S. D., Ross, R. R., Puls, R. W., Lee, T. R., Woods, L. L., 2014, Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater, Sci. Total Environ., 468-469, 186-194. https://doi.org/10.1016/j.scitotenv.2013.08.056
  21. Zhang, Y., Cao, W., Wang, W., Dong, Q., 2013, Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain, Northern China, J. Geochem. Explo., 135, 31-39. https://doi.org/10.1016/j.gexplo.2012.12.004