DOI QR코드

DOI QR Code

담수환경에서 eDNA와 eRNA를 이용한 Microcystin 합성 남조류 탐색 및 세포 내 Microcystin 생합성 활성 변화

Detection of Microcystin Synthetic Cyanobacteria and Variation of Intracellular Microcystin Synthesis Using by eDNA and eRNA in Freshwater Ecocystem

  • 김건희 (건국대학교 상허생명과학대학 휴먼앤에코케어센터) ;
  • 박채홍 (건국대학교 상허생명과학대학 휴먼앤에코케어센터) ;
  • 조현진 (전남대학교 생물학과) ;
  • 권대률 (국립낙동강생물자원관 미생물연구실 원생생물연구팀) ;
  • 황순진 (건국대학교 환경보건과학과)
  • Keonhee Kim (Human and Eco Care Center, College of Sang-huh Life Science, Konkuk University) ;
  • Chaehong Park (Human and Eco Care Center, College of Sang-huh Life Science, Konkuk University) ;
  • Hyeonjin Cho (Department of Biology, Chonnam National University) ;
  • Daeryul Kwon (Protist Research Team, Microbial Department, Nakdonggang National Institute of Biological Resources) ;
  • Soon-Jin Hwang (Department of Environmental Health Science, Konkuk University)
  • 투고 : 2023.02.24
  • 심사 : 2023.03.16
  • 발행 : 2023.03.31

초록

북한강 수역에서 가장 많이 검출되는 Microcystin (MC)을 대상으로 하여 MC 생합성 유전자(mcyA gene), 남조류 세포밀도, MC 농도 사이의 관계를 분석하여 RNA-MC 환산식을 도출하고 남조류 세포 내 존재하는 MC 농도를 예측하였다. 북한강 수역에서 mcyA 유전자는 묵현천 합류 이후 북한강 하류 지점에서 주로 발견되었으며 평균적으로 다른 지점보다 높은 copy number가 발견되었다. 북한강 상류 의암호 수역의 경우, 공지천 지점에서 mcyA 유전자 copy number가 증가하였으며 9월 이후 북한강 수역 전체에서 mcyA 유전자 copy number는 감소하였다. mcyA gene expression은 상류와 하류 수역의 시·공간적 차이가 존재하였으며 여름철 짧은 시기에 집중적으로 발현하였다. mcyA gene expression 양은 MC 농도와 상관성이 매우 높을 뿐만 아니라 MC을 생합성하는 것으로 알려진 Microcystis aeruginosa와 Dolichospermum circinale의 세포밀도와도 통계적으로 유의한 상관성이 존재하였다. RNA-MC 관계를 기반으로 도출된 6개의 환산식은 통계적 유의성을 보이며(p<0.05) 0.9 이상의 높은 상관계수(r)를 나타냈다. eRNA에 존재하는 MC 생합성 유전자 발현량은 수중의 남조독소 물질 합성을 판단하고 유전자의 활성 정도를 빠르게 정량하여 MC 발생 조기경보에 충분히 활용할 수 있을 것으로 판단된다.

Targeting Microcystin (MC), which is most abundantly detected in the North-Han River water area, we analyzed the relationship between the MC biosynthesis gene (mcyA gene), cyanobacteria cell density, and MC concentration, derived an RNA-MC conversion formula, and derived the cyanobacteria. The concentration of MC present in cells was predicted. In the North-Han River waters, the mcyA gene was found mainly at downstream sites of the North-Han River after Muk-Hyeon Stream junction, and higher copy numbers were found on average than other sites. In the Uiam Lake waters upstream of the North-Han River, the mcyA gene copy number increased at the Kong-Ji Stream point, and after September, the mcyA gene copy number decreased throughout the North-Han River waters. The expression of the mcyA gene was concentrated in the short period of summer due to the spatio-temporal difference between upstream and downstream water bodies. The mcyA gene expression level was not only highly correlated with MC concentration, but also correlated with the cell density of Microcystis aeruginosa and Dolichospermum circinale, which are known to biosynthesize MC. Six conversion formulas derived based on the RNA-MC relationship showed statistical significance (p<0.05) and exhibited high correlation coefficients (r) of 0.9 or higher. The expression level of MC biosynthesis gene present in eRNA determines the synthesis of cyanotoxin substances in water, quickly quantifies gene activity, and can be fully utilized for early warning of MC development.

키워드

과제정보

이 논문은 2021학년도 건국대학교의 연구년교원 지원에 의하여 연구되었음.

참고문헌

  1. Boopathi, T. and J.-S. Ki. 2014. Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6(7): 1951-1978. https://doi.org/10.3390/toxins6071951
  2. Chen, X., H. Xiang, Y. Hu, Y. Zhang, L. Ouyang and M.Gao. 2014. Fates of Microcystis aeruginosa cells and associated microcystins in sediment and the effect of coagulation process on them. Toxins 6(1): 152-167. https://doi.org/10.3390/toxins6010152
  3. Chorus, I. and J. Bartram. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press.
  4. Christoffersen, K. and H. Kaas. 2000. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. Limnology and Oceanography 45(5): 1212-1212. https://doi.org/10.4319/lo.2000.45.5.1212
  5. Chun, S.-J., Y. Cui, C.S. Lee, A.R. Cho, K. Baek, A. Choi, S.-R. Ko, H.-G. Lee, S. Hwang and H.-M. Oh. 2019. Characterization of distinct cyanoHABs-related modules in microbial recurrent association network. Frontiers in Microbiology 10: 1637.
  6. Crush, J., L. Briggs, J. Sprosen and S. Nichols. 2008. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environmental Toxicology: An International Journal 23(2): 246-252. https://doi.org/10.1002/tox.20331
  7. Dong, X., S. Zeng, F. Bai, D. Li and M. He. 2016. Extracellular microcystin prediction based on toxigenic Microcystis detection in a eutrophic lake. Scientific Reports 6: 20886.
  8. Hisbergues, M., G. Christiansen, L. Rouhiainen, K. Sivonen and T. Borner. 2003. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Archives of Microbiology 180(6): 402-410. https://doi.org/10.1007/s00203-003-0605-9
  9. Jeon, J.H., G.-e. Rhie and J.H. Kim. 2017. Recent advancements in diagnostic ELISA kits and immunosensors. Korea Center for Diesease Control.
  10. Jung, J. 1993. Illustration of Korea freshwater phytoplankton. Academy.
  11. Kaebernick, M., T. Rohrlack, K. Christoffersen and B.A. Neilan. 2001. A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia. Environmental Microbiology 3(11): 669-679. https://doi.org/10.1046/j.1462-2920.2001.00241.x
  12. Kim, J., J. Lim and C. Lee. 2013. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations. Biotechnology Advances 31(8): 1358-1373. https://doi.org/10.1016/j.biotechadv.2013.05.010
  13. Kim, K., C. Park, Y. Yoon and S.-J. Hwang. 2018a. Harmful Cyanobacterial Material Production in the North Han River (South Korea): Genetic Potential and Temperature-Dependent Properties. International Journal of Environmental Research and Public Health 15(3): 444.
  14. Kim, K., Y. Yoon, W.-Y. Hong, J. Kim, Y.-C. Cho and S.-J. Hwang. 2018b. Application of metagenome analysis to characterize the molecular diversity and saxitoxin-producing potentials of a cyanobacterial community: a case study in the North Han River, Korea. Applied Biological Chemistry 61(2): 153-161. https://doi.org/10.1007/s13765-017-0342-4
  15. Kuzuyama, T. 2002. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Bioscience, Biotechnology, and Biochemistry 66(8): 1619-1627. https://doi.org/10.1271/bbb.66.1619
  16. Lazarevic, V., N. Gaia, M. Girard, P. Francois and J. Schrenzel. 2013. Comparison of DNA extraction methods in analysis of salivary bacterial communities. PloS One 8(7): e67699.
  17. Lee, J., J. Choi, M. Fatka, E. Swanner, K. Ikuma, X. Liang, T. Leung and A. Howe. 2020. Improved detection of mcyA genes and their phylogenetic origins in harmful algal blooms. Water Research 176: 115730.
  18. Mathys, W. and B. Surholt. 2004. Analysis of microcystins in freshwater samples using high performance liquid chromatography and an enzyme-linked immunosorbent assay. International Journal of Hygiene and Environmental Health 207(6): 601-605. https://doi.org/10.1078/1438-4639-00334
  19. McElhiney, J. and L.A. Lawton. 2005. Detection of the cyanobacterial hepatotoxins microcystins. Toxicology and Applied Pharmacology 203(3): 219-230. https://doi.org/10.1016/j.taap.2004.06.002
  20. Meis, J.E. and A. Khanna. 2009. RNA amplification and cDNA synthesis for qRT-PCR directly from a single cell. Nature Methods 6(8): 622.
  21. MOE. 2016. Standard Methods for the Examination of drinking water surveillance.
  22. Monchamp, M.-E., F.R. Pick, B.E. Beisner and R. Maranger. 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PloS One 9(1): e85573.
  23. Neilan, B.A., D. Jacobs, L.L. Blackall, P.R. Hawkins, P.T. Cox and A.E. Goodman. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic and Evolutionary Microbiology 47(3): 693-697. https://doi.org/10.1099/00207713-47-3-693
  24. Ngwa, F.F., C.A. Madramootoo and S. Jabaji. 2014. Comparison of cyanobacterial microcystin synthetase (mcy) E gene transcript levels, mcy E gene copies, and biomass as indicators of microcystin risk under laboratory and field conditions. MicrobiologyOpen 3(4): 411-425. https://doi.org/10.1002/mbo3.173
  25. NIER. 2014. Characteristics of Cyanobacterial Toxin Production and Management Strategies of These Toxins. National Institute of Environmental Research.
  26. Oh, K.H. 2009. Screening of conserved DNA sequences in microcystin-producing cyanobacteria and application of the sequences to monitor microcystins in water reservoirs. Seoul National University of Graduate School.
  27. Olsen, B.K., M.F. Chislock and A.E. Wilson. 2016. Eutrophication mediates a common off-flavor compound, 2-methylisoborneol, in a drinking water reservoir. Water Research 92: 228-234.
  28. Pacheco, A.B.F., I.A. Guedes and S.M. Azevedo. 2016. Is qPCR a reliable indicator of cyanotoxin risk in freshwater?. Toxins 8(6): 172.
  29. Park, H.-D., J. Han and B.-s. Jeon. 2016. Dynamics and control methods of cyanotoxins in aquatic ecosystem. Korean Journal of Ecology and Environment 49(2): 67-79. https://doi.org/10.11614/KSL.2016.49.2.067
  30. Park, H.-K., W.-H. Jheong, O.-S. Kwon and J.-K. Ryu. 2000. Seasonal succession of toxic cyanobacteria and microcystins concentration in Paldang reservoir. Algae 15(1): 29-35.
  31. Park, J.-G. 2012a. Algal Flora of Korea-Freshwater cyanobacteria (I). Ministry of Environment, National Institute of Biological Resource.
  32. Park, J.-G. 2012b. Algal Flora of Korea-Freshwater cyanobacteria (II). Ministry of Environment, National Institute of Biological Resource.
  33. Peterson, B.G., P. Carl, K. Boudt, R. Bennett, J. Ulrich, E. Zivot, D. Cornilly, E. Hung, M. Lestel and K. Balkissoon. 2018. Package 'PerformanceAnalytics'. R Team Cooperation.
  34. Pimentel, J.S. and A. Giani. 2014. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Applied and Environmental Microbiology 80(18): 5836-5843. https://doi.org/10.1128/AEM.01009-14
  35. Qu, J.-Q., Q.-J. Zhang, C.-X. Jia, L. Pan and Y. Mu. 2013. Optimization of microcystin extraction for their subsequent analysis by HPLC-MS/MS method in urban lake water. International Journal of Environmental Science and Development 4(5): 600.
  36. Savela, H., L. Spoof, N. Perala, M. Preede, U. Lamminmaki, S. Nybom, K. Haggqvist, J. Meriluoto and M. Vehniainen. 2015. Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Aland Islands, Finland. Harmful Algae 46: 1-10. https://doi.org/10.1016/j.hal.2015.04.005
  37. Seravalli, J., W. Gu, A. Tam, E. Strauss, T.P. Begley, S.P. Cramer and S.W. Ragsdale. 2003. Functional copper at the acetyl-CoA synthase active site. Proceedings of the National Academy of Sciences 100(7): 3689-3694. https://doi.org/10.1073/pnas.0436720100
  38. Shabnam, R. 2013. Evaluation of laboratory methods for the analysis of microcystins. Ryerson University.
  39. Shamsollahi, H.R., M. Alimohammadi, R. Nabizadeh, S. Nazmara and A.H. Mahvi. 2015. Measurement of microcystin-LR in water samples using improved HPLC method. Global Journal of Health Science 7(2): 66.
  40. Sklenar, K., J. Westrick and D. Szlag. 2016. Managing Cyanotoxins in Drinking Water: A Technical Guidance Manual for Drinking Water Professionals. American Water Works Association and Water Research Foundation, Denver, CO, USA.
  41. Smith, J.L., G.L. Boyer and P.V. Zimba. 2008. A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280(1-4): 5-20. https://doi.org/10.1016/j.aquaculture.2008.05.007
  42. Srinivasan, R. and G.A. Sorial. 2011. Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: a critical review. Journal of Environmental Sciences 23(1): 1-13. https://doi.org/10.1016/S1001-0742(10)60367-1
  43. Stelzer, E.A., K.A. Loftin and P. Struffolino. 2013. Relations between DNA- and RNA-based molecular methods for cyanobacteria and Microcystin concentration at Maumee Bay State Park Lakeside Beach, Oregon, Ohio, 2012. US Department of the Interior, US Geological Survey.
  44. Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512-526.
  45. Tillett, D., D.L. Parker and B.A. Neilan. 2001. Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Applied and Environmental Microbiology 67(6): 2810-2818. https://doi.org/10.1128/AEM.67.6.2810-2818.2001
  46. Trapp, S.C. and R.B. Croteau. 2001. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158(2): 811-832. https://doi.org/10.1093/genetics/158.2.811
  47. Tsao, H.-W., A. Michinaka, H.-K. Yen, S. Giglio, P. Hobson, P. Monis and T.-F. Lin. 2014. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR. Water Research 49: 416-425. https://doi.org/10.1016/j.watres.2013.10.028
  48. Ueno, Y., S. Nagata, T. Tsutsumi, A. Hasegawa, M.F. Watanabe, H.-D. Park, G.-C. Chen, G. Chen and S.-Z. Yu. 1996. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17(6): 1317-1321. https://doi.org/10.1093/carcin/17.6.1317
  49. Vaitomaa, J., A. Rantala, K. Halinen, L. Rouhiainen, P. Tallberg, L. Mokelke and K. Sivonen. 2003. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Applied and Environmental Microbiology 69(12): 7289-7297. https://doi.org/10.1128/AEM.69.12.7289-7297.2003
  50. Vezie, C., L. Brient, K. Sivonen, G. Bertru, J.-C. Lefeuvre and M. Salkinoja-Salonen. 1998. Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microbial Ecology 35(2): 126-135. https://doi.org/10.1007/s002489900067
  51. Waters, T. and A. Dugan. 2016. Water Treatment Optimization for Cyanotoxins, EPA.
  52. Westrick, J.A., D.C. Szlag, B.J. Southwell and J. Sinclair. 2010. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and Bioanalytical Chemistry 397(5): 1705-1714. https://doi.org/10.1007/s00216-010-3709-5
  53. Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer.
  54. Zamyadi, A., S.L. MacLeod, Y. Fan, N. McQuaid, S. Dorner, S. Sauve and M. Prevost. 2012. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge. Water Research 46(5): 1511-1523. https://doi.org/10.1016/j.watres.2011.11.012