DOI QR코드

DOI QR Code

Cocoa: a functional food that decreases insulin resistance and oxidative damage in young adults with class II obesity

  • Jose Arnold Gonzalez-Garrido (Centro de Investigacion de Ciencia y Tecnologia Aplicada de Tabasco (CICTAT), Division Academica de Ciencias Basicas. Laboratorio de Bioquímica y Biologia Molecular, Universidad Juarez Autonoma de Tabasco) ;
  • Jose Ruben Garcia-Sanchez (Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina del Instituto Politecnico Nacional. Laboratorio de Oncologia Molecular y Estres Oxidativo, Instituto Politecnico Nacional) ;
  • Carlos Javier Lopez-Victorio (Centro de Investigacion de Ciencia y Tecnologia Aplicada de Tabasco (CICTAT), Division Academica de Ciencias Basicas. Laboratorio de Bioquímica y Biologia Molecular, Universidad Juarez Autonoma de Tabasco) ;
  • Adelma Escobar-Ramirez (Centro de Investigacion de Ciencia y Tecnologia Aplicada de Tabasco (CICTAT), Division Academica de Ciencias Basicas. Laboratorio de Bioquímica y Biologia Molecular, Universidad Juarez Autonoma de Tabasco) ;
  • Ivonne Maria Olivares-Corichi (Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina del Instituto Politecnico Nacional. Laboratorio de Oncologia Molecular y Estres Oxidativo, Instituto Politecnico Nacional)
  • Received : 2022.04.15
  • Accepted : 2022.08.01
  • Published : 2023.04.01

Abstract

BACKGROUND/OBJECTIVES: Cocoa consumption is associated with health benefits due to its high content of polyphenols. However, the effects of short-term cocoa consumption remain unclear. We aimed to determine the effects generated by cocoa consumption (for 7 days) in young adults in normoweight and class II obesity. SUBJECTS/METHODS: Before-and-after study was carried out in normoweight (NW) (n = 15) and class II obesity (CIIO) (n = 15) young adults. The NW and CIIO participants consumed 25 and 39 g of cocoa, respectively, per day for 7 days. The effect of cocoa consumption was evaluated on the lipid profile, insulin resistance (IR), and inflammation. Oxidative damage was also examined by assessing the biomarkers of oxidative damage in plasma. In addition, recombinant human insulin was incubated with blood obtained from the participants, and the molecular damage to the hormone was analyzed. RESULTS: Cocoa consumption resulted in decreased low-density lipoprotein-cholesterol in both groups (P = 0.04), while the total cholesterol, high-density lipoprotein cholesterol, and triglycerides were maintained at the recommended levels. Initially, IR was detected in the CIIO group (homeostasis model assessment [HOMA] = 4.78 ± 0.4), which is associated with molecular damage to insulin. Interestingly, intervention with cocoa resulted in improved IR (HOMA = 3.14 ± 0.31) (P = 0.0018) as well as molecular damage to insulin. Finally, cocoa consumption significant decreased the arginase activity (P = 0.0249) in the CIIO group; this is a critical enzymatic activity in the inflammatory process associated with obesity. CONCLUSIONS: The short-term consumption of cocoa improves the lipid profile, exerts anti-inflammatory effects, and protects against oxidative damage. Results of this study indicate that cocoa consumption can potentially improve IR and restore a healthy redox status.

Keywords

Acknowledgement

This research was funded by the "Researchers Supporting Project" (PRODEP-UJAT-PTC-261), Universidad Juarez Autonoma de Tabasco and IPN-SIP20200485.

References

  1. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377:13-27. https://doi.org/10.1056/NEJMoa1614362
  2. Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 2016;22 Suppl:s176-85.
  3. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017;23:804-14. https://doi.org/10.1038/nm.4350
  4. Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2019;234:3336-46. https://doi.org/10.1002/jcp.27293
  5. Montes-Cortes DH, Hicks JJ, Ceballos-Reyes GM, Garcia-Sanchez JR, Medina-Navarro R, Olivares-Corichi IM. Chemical and functional changes of human insulin by in vitro incubation with blood from diabetic patients in oxidative stress. Metabolism 2010;59:935-42. https://doi.org/10.1016/j.metabol.2009.10.013
  6. Olivares-Corichi I, Rincon Viquez M, Gutierrez-Lopez L, Ceballos-Reyes G, Garcia-Sanchez J. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm Metab Res 2011;43:748-53. https://doi.org/10.1055/s-0031-1286305
  7. Rincon Viquez MJ, Garcia-Sanchez JR, Tapia Gonzalez MA, Gutierrez Lopez L, Ceballos-Reyes GM, Olivares-Corichi IM. Insulin polymers in the plasma of obese subjects are associated with elevated levels of carbonyl groups and are decreased by (-)-epicatechin. Horm Metab Res 2014;46:499-504. https://doi.org/10.1055/s-0034-1371855
  8. Xing J, Chen C. Hyperinsulinemia: beneficial or harmful or both on glucose homeostasis. Am J Physiol Endocrinol Metab 2022;323:E2-7. https://doi.org/10.1152/ajpendo.00441.2021
  9. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013;5:1218-40. https://doi.org/10.3390/nu5041218
  10. American Diabetes Association [Internet]. Arlington (VA): American Diabetes Association; 2022 [cited 2021 May 8]. Available from: https://diabetes.org/healthy-living/medication-treatments/insulin-resistance.
  11. International Diabetes Federation. IDF Diabetes Atlas 2021 (10th Edition) [Internet]. Brussels: International Diabetes Federation; 2021 [cited 2021 January 1]. Available from: https://diabetesatlas.org/atlas/tenth-edition/.
  12. Macena ML, Nunes LF, da Silva AF, Pureza IR, Praxedes DR, Santos JC, Bueno NB. Effects of dietary polyphenols in the glycemic, renal, inflammatory, and oxidative stress biomarkers in diabetic nephropathy: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev. Forthcoming 2022.
  13. Ren N, Kim E, Li B, Pan H, Tong T, Yang CS, Tu Y. Flavonoids Alleviating Insulin Resistance through Inhibition of Inflammatory Signaling. J Agric Food Chem 2019;67:5361-73. https://doi.org/10.1021/acs.jafc.8b05348
  14. Aprotosoaie AC, Miron A, Trifan A, Luca VS, Costache II. The cardiovascular effects of cocoa polyphenols-an overview. Diseases 2016;4:39.
  15. Koch W. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients 2019;11:1039.
  16. Martin MA, Ramos S. Cocoa polyphenols in oxidative stress: potential health implications. J Funct Foods 2016;27:570-88. https://doi.org/10.1016/j.jff.2016.10.008
  17. Crozier SJ, Preston AG, Hurst JW, Payne MJ, Mann J, Hainly L, Miller DL. Cacao seeds are a "Super Fruit": a comparative analysis of various fruit powders and products. Chem Cent J 2011;5:5.
  18. Gonzalez-Garrido JA, Garcia-Sanchez JR, Garrido-Llanos S, Olivares-Corichi IM. An association of cocoa consumption with improved physical fitness and decreased muscle damage and oxidative stress in athletes. J Sports Med Phys Fitness 2017;57:441-7. https://doi.org/10.23736/S0022-4707.16.06032-1
  19. Hernandez-Alcaraz C, Aguilar-Salinas CA, Mendoza-Herrera K, Pedroza-Tobias A, Villalpando S, Shamah-Levy T, Rivera-Dommarco J, Hernandez-Avila M, Barquera S. Dyslipidemia prevalence, awareness, treatment and control in Mexico: results of the Ensanut 2012. Salud Publica Mex 2020;62:137-46. https://doi.org/10.21149/10520
  20. Murguia-Romero M, Jimenez-Flores JR, Sigrist-Flores SC, Tapia-Pancardo DC, Jimenez-Ramos A, Mendez-Cruz AR, Villalobos-Molina R. Prevalence of metabolic syndrome in young mexicans: a sensitivity analysis on its components. NCtr Hosp 2015;32:189-95.
  21. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000;894:i-xii, 1-253.
  22. Grassi D, Desideri G, Necozione S, di Giosia P, Barnabei R, Allegaert L, Bernaert H, Ferri C. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J Hypertens 2015;33:294-303. https://doi.org/10.1097/HJH.0000000000000412
  23. Somerville V, Bringans C, Braakhuis A. Polyphenols and performance: a systematic review and meta-analysis. Sports Med 2017;47:1589-99. https://doi.org/10.1007/s40279-017-0675-5
  24. Basu A, Betts NM, Leyva MJ, Fu D, Aston CE, Lyons TJ. Acute cocoa supplementation increases postprandial HDL cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. J Nutr 2015;145:2325-32. https://doi.org/10.3945/jn.115.215772
  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9. https://doi.org/10.1007/BF00280883
  26. Gerard-Monnier D, Erdelmeier I, Regnard K, Moze-Henry N, Yadan JC, Chaudiere J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 1998;11:1176-83. https://doi.org/10.1021/tx9701790
  27. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994;233:357-63. https://doi.org/10.1016/S0076-6879(94)33041-7
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
  29. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-7. https://doi.org/10.1016/0003-9861(59)90090-6
  30. Gutierrez-Lopez L, Garcia-Sanchez JR, Rincon-Viquez MJ, Lara-Padilla E, Sierra-Vargas MP, Olivares-Corichi IM. Hypocaloric diet and regular moderate aerobic exercise is an effective strategy to reduce anthropometric parameters and oxidative stress in obese patients. Obes Facts 2012;5:12-22. https://doi.org/10.1159/000336526
  31. Aprotosoaie AC, Luca SV, Miron A. Flavor chemistry of cocoa and cocoa products: an overview. Compr Rev Food Sci Food Saf 2016;15:73-91. https://doi.org/10.1111/1541-4337.12180
  32. Khan N, Khymenets O, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, Monagas M, Mora-Cubillos X, Llorach R, Andres-Lacueva C. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients 2014;6:844-80. https://doi.org/10.3390/nu6020844
  33. Esser D, Mars M, Oosterink E, Stalmach A, Muller M, Afman LA. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men. FASEB J 2014;28:1464-73. https://doi.org/10.1096/fj.13-239384
  34. Di Renzo L, Rizzo M, Sarlo F, Colica C, Iacopino L, Domino E, Sergi D, De Lorenzo A. Effects of dark chocolate in a population of normal weight obese women: a pilot study. Eur Rev Med Pharmacol Sci 2013;17:2257-66.
  35. Pereyra-Vergara F, Olivares-Corichi IM, Perez-Ruiz AG, Luna-Arias JP, Garcia-Sanchez JR. Apoptosis induced by (-)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules 2020;25:1020.
  36. Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: a systematic review and meta-analysis of interventional studies. Complement Ther Med 2020;48:102240.
  37. Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G, Blumberg JB, Ferri C. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 2008;138:1671-6. https://doi.org/10.1093/jn/138.9.1671
  38. Leyva-Soto A, Chavez-Santoscoy RA, Lara-Jacobo LR, Chavez-Santoscoy AV, Gonzalez-Cobian LN. Daily consumption of chocolate rich in flavonoids decreases cellular genotoxicity and improves biochemical parameters of lipid and glucose metabolism. Molecules 2018;23:2220.
  39. Tokede OA, Gaziano JM, Djousse L. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis. Eur J Clin Nutr 2011;65:879-86. https://doi.org/10.1038/ejcn.2011.64
  40. Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr 2003;133:700-6. https://doi.org/10.1093/jn/133.3.700
  41. Shimizu M, Li J, Inoue J, Sato R. Quercetin represses apolipoprotein B expression by inhibiting the transcriptional activity of C/EBPβ. PLoS One 2015;10:e0121784.
  42. Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 2007;18:179-83. https://doi.org/10.1016/j.jnutbio.2006.12.005
  43. Robertson RP. Antioxidant drugs for treating beta-cell oxidative stress in type 2 diabetes: glucose-centric versus insulin-centric therapy. Discov Med 2010;9:132-7.
  44. Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol 2016;56:R33-54. https://doi.org/10.1530/JME-15-0232
  45. Martin MA, Ramos S, Cordero-Herrero I, Bravo L, Goya L. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress. Nutrients 2013;5:2955-68. https://doi.org/10.3390/nu5082955
  46. Fernandez-Millan E, Cordero-Herrera I, Ramos S, Escriva F, Alvarez C, Goya L, Martin MA. Cocoa-rich diet attenuates beta cell mass loss and function in young Zucker diabetic fatty rats by preventing oxidative stress and beta cell apoptosis. Mol Nutr Food Res 2015;59:820-4. https://doi.org/10.1002/mnfr.201400746
  47. Martin MA, Fernandez-Millan E, Ramos S, Bravo L, Goya L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol Nutr Food Res 2014;58:447-56. https://doi.org/10.1002/mnfr.201300291
  48. Munzel T, Daiber A, Ullrich V, Mulsch A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol 2005;25:1551-7. https://doi.org/10.1161/01.ATV.0000168896.64927.bb
  49. Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014;73:383-99. https://doi.org/10.1016/j.freeradbiomed.2014.05.016
  50. Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: a multifaceted enzyme important in health and disease. Physiol Rev 2018;98:641-65. https://doi.org/10.1152/physrev.00037.2016
  51. Zhou L, Sun CB, Liu C, Fan Y, Zhu HY, Wu XW, Hu L, Li QP. Upregulation of arginase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells. Int J Clin Exp Pathol 2015;8:2728-36.