DOI QR코드

DOI QR Code

The effect of curcumin on blood pressure and cognitive impairment in spontaneously hypertensive rats

  • Ji Young Lim (Department of Food Science and Nutrition, Dankook University) ;
  • Wookyoung Kim (Department of Food Science and Nutrition, Dankook University) ;
  • Ae Wha Ha (Department of Food Science and Nutrition, Dankook University)
  • Received : 2022.01.19
  • Accepted : 2022.08.01
  • Published : 2023.04.01

Abstract

BACKGROUND/OBJECTIVES: It is known that the renin-angiotensin system (RAS) in the brain could regulate cognitive functions as well as blood pressure. Inhibition of RAS for the improvement of cognitive function may be a new strategy, but studies so far have mostly reported on the effects of RAS inhibition by drugs, and there is no research on cognitive improvement through RAS inhibition of food ingredients. Therefore, this study investigated the effect of curcumin on blood pressure and cognitive function and its related mechanism in spontaneously hypertensive rat/Izm (SHR/Izm). MATERIALS/METHODS: Six-week-old SHR/Izm rats were divided into 5 groups: control group (CON), scopolamine group (SCO, drug for inducing cognitive deficits), positive control (SCO and tacrine [TAC]), curcumin 100 group (CUR100, SCO + Cur 100 mg/kg), and curcumin 200 group (CUR200, SCO + Cur 200 mg/kg). Changes in blood pressure, RAS, cholinergic system, and cognitive function were compared before and after cognitive impairment. RESULTS: The SCO group showed increased blood pressure and significantly reduced cognitive function based on the y-maze and passive avoidance test. Curcumin treatments significantly improved blood pressure and cognitive function compared with the SCO group. In both the CUR100 and CUR200 groups, the mRNA expressions of angiotensin-converting enzyme (ACE) and angiotensin II receptor type1 (AT1), as well as the concentrations of angiotensin II (Ang II) in brain tissue were significantly decreased. The mRNA expression of the muscarinic acetylcholine receptors (mAChRs) and acetylcholine (ACh) content was significantly increased, compared with the SCO group. CONCLUSIONS: The administration of curcumin improved blood pressure and cognitive function in SCO-induced hypertensive mice, indicating that the cholinergic system was improved by suppressing RAS and AT1 receptor expression and increasing the mAChR expression.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07049900).

References

  1. Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, Gulati M, Kamel H, Knopman DS, Launer LJ, et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension 2016;68:e67-94. https://doi.org/10.1161/HYP.0000000000000053
  2. Cherubini A, Lowenthal DT, Paran E, Mecocci P, Williams LS, Senin U. Hypertension and cognitive function in the elderly. Dis Mon 2010;56:106-47. https://doi.org/10.1016/j.disamonth.2009.12.007
  3. Forte G, Casagrande M. Effects of blood pressure on cognitive performance in aging: a systematic review. Brain Sci 2020;10:919.
  4. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012;2012:367516.
  5. Sunagawa Y, Morimoto T, Wada H, Takaya T, Katanasaka Y, Kawamura T, Yanagi S, Marui A, Sakata R, Shimatsu A, et al. A natural p300-specific histone acetyltransferase inhibitor, curcumin, in addition to angiotensin-converting enzyme inhibitor, exerts beneficial effects on left ventricular systolic function after myocardial infarction in rats. Circ J 2011;75:2151-9. https://doi.org/10.1253/circj.CJ-10-1072
  6. Yamada K, Horita T, Takayama M, Takahashi S, Takaba K, Nagata Y, Suzuki N, Kanda T. Effect of a centrally active angiotensin converting enzyme inhibitor, perindopril, on cognitive performance in chronic cerebral hypo-perfusion rats. Brain Res 2011;1421:110-20. https://doi.org/10.1016/j.brainres.2011.09.016
  7. Kumaran D, Udayabanu M, Kumar M, Aneja R, Katyal A. Involvement of angiotensin converting enzyme in cerebral hypoperfusion induced anterograde memory impairment and cholinergic dysfunction in rats. Neuroscience 2008;155:626-39. https://doi.org/10.1016/j.neuroscience.2008.06.023
  8. Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, Maheshwari K, John Doyle D. The renin angiotensin system and the brain: New developments. J Clin Neurosci 2017;46:1-8. https://doi.org/10.1016/j.jocn.2017.08.055
  9. Takeda S, Sato N, Ogihara T, Morishita R. The renin-angiotensin system, hypertension and cognitive dysfunction in Alzheimer's disease: new therapeutic potential. Front Biosci 2008;13:2253-65. https://doi.org/10.2741/2839
  10. Wright JW, Harding JW. Contributions by the brain renin-angiotensin system to memory, cognition, and Alzheimer's disease. J Alzheimers Dis 2019;67:469-80. https://doi.org/10.3233/JAD-181035
  11. Tota S, Hanif K, Kamat PK, Najmi AK, Nath C. Role of central angiotensin receptors in scopolamine-induced impairment in memory, cerebral blood flow, and cholinergic function. Psychopharmacology (Berl) 2012;222:185-202. https://doi.org/10.1007/s00213-012-2639-7
  12. Sabbatini M, Catalani A, Consoli C, Marletta N, Tomassoni D, Avola R. The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Mech Ageing Dev 2002;123:547-59. https://doi.org/10.1016/S0047-6374(01)00362-1
  13. Papadopoulos P, Tong XK, Imboden H, Hamel E. Losartan improves cerebrovascular function in a mouse model of Alzheimer's disease with combined overproduction of amyloid-β and transforming growth factor-β1. J Cereb Blood Flow Metab 2017;37:1959-70. https://doi.org/10.1177/0271678X16658489
  14. Barnes JM, Barnes NM, Costall B, Horovitz ZP, Naylor RJ. Angiotensin II inhibits the release of [3H] acetylcholine from rat entorhinal cortex in vitro. Brain Res 1989;491:136-43. https://doi.org/10.1016/0006-8993(89)90095-4
  15. Ahmed HA, Ishrat T, Pillai B, Fouda AY, Sayed MA, Eldahshan W, Waller JL, Ergul A, Fagan SC. RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. J Neuroinflammation 2018;15:229.
  16. Royea J, Lacalle-Aurioles M, Trigiani LJ, Fermigier A, Hamel E. AT2R's (Angiotensin II Type 2 Receptor's) tole in cognitive and cerebrovascular deficits in a mouse model of Alzheimer disease. Hypertension 2020;75:1464-74. https://doi.org/10.1161/HYPERTENSIONAHA.119.14431
  17. Jeong EJ, Lee KY, Kim SH, Sung SH, Kim YC. Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. Eur J Pharmacol 2008;588:78-84. https://doi.org/10.1016/j.ejphar.2008.04.015
  18. Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM. Associations of anti-hypertensive treatments with Alzheimer's disease, vascular dementia, and other dementias. J Alzheimers Dis 2011;26:699-708. https://doi.org/10.3233/JAD-2011-110347
  19. Mogi M, Horiuchi M. Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatr Gerontol Int 2013;13:13-8. https://doi.org/10.1111/j.1447-0594.2012.00900.x
  20. Savaskan E. The role of the brain renin-angiotensin system in neurodegenerative disorders. Curr Alzheimer Res 2005;2:29-35. https://doi.org/10.2174/1567205052772740
  21. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017;60:1620-37. https://doi.org/10.1021/acs.jmedchem.6b00975
  22. Awasthi H, Tota S, Hanif K, Nath C, Shukla R. Protective effect of curcumin against intracerebral streptozotocin induced impairment in memory and cerebral blood flow. Life Sci 2010;86:87-94. https://doi.org/10.1016/j.lfs.2009.11.007
  23. Abd Allah ES, Gomaa AM. Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: role of angiotensin converting enzyme 1. Appl Physiol Nutr Metab 2015;40:1061-7. https://doi.org/10.1139/apnm-2015-0145
  24. Fan X, Zhang C, Liu DB, Yan J, Liang HP. The clinical applications of curcumin: current state and the future. Curr Pharm Des 2013;19:2011-31.
  25. Greish SM, Abdel-Hady Z, Mohammed SS, Abdel-Hamed AR, Masoud RE, Eltamany DA, Abogresha NM. Protective potential of curcumin in L-NAME-induced hypertensive rat model: AT1R, mitochondrial DNA synergy. Int J Physiol Pathophysiol Pharmacol 2020;12:134-46.
  26. Sarker MR, Franks SF. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience 2018;40:73-95. https://doi.org/10.1007/s11357-018-0017-z
  27. Yu SY, Zhang M, Luo J, Zhang L, Shao Y, Li G. Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog Neuropsychopharmacol Biol Psychiatry 2013;45:47-53. https://doi.org/10.1016/j.pnpbp.2013.05.001
  28. Bassani TB, Turnes JM, Moura EL, Bonato JM, Coppola-Segovia V, Zanata SM, Oliveira RM, Vital MA. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer's type. Behav Brain Res 2017;335:41-54. https://doi.org/10.1016/j.bbr.2017.08.014
  29. Lee J, Kim YS, Kim E, Kim Y, Kim Y. Curcumin and hesperetin attenuate D-galactose-induced brain senescence in vitro and in vivo. Nutr Res Pract 2020;14:438-52. https://doi.org/10.4162/nrp.2020.14.5.438
  30. Kim HR, Kim WK, Ha AW. Effects of phytochemicals on blood pressure and neuroprotection mediated via brain renin-angiotensin system. Nutrients 2019;11:2761.
  31. Ishinaga Y, Nabika T, Shimada T, Hiraoka J, Nara Y, Yamori Y. Re-evaluation of the SA gene in spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol 1997;24:18-22. https://doi.org/10.1111/j.1440-1681.1997.tb01777.x
  32. Kishikawa Y, Kawahara Y, Yamada M, Kaneko F, Kawahara H, Nishi A. The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: therapeutic implications of low-dose methylphenidate. Behav Brain Res 2014;274:235-42. https://doi.org/10.1016/j.bbr.2014.08.026
  33. Gacar N, Mutlu O, Utkan T, Komsuoglu Celikyurt I, Gocmez SS, Ulak G. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol Biochem Behav 2011;99:316-23. https://doi.org/10.1016/j.pbb.2011.05.017
  34. Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 2012;322:241-9. https://doi.org/10.1016/j.jns.2012.05.047
  35. Chang YM, Ashok Kumar K, Ju DT, Ho TJ, Mahalakshmi B, Lin WT, Day CH, Vijaya Padma V, Liao PH, Huang CY. Dipeptide IF prevents the effects of hypertension-induced Alzheimer's disease on long-term memory in the cortex of spontaneously hypertensive rats. Environ Toxicol 2020;35:570-81. https://doi.org/10.1002/tox.22892
  36. Thiratmatrakul S, Yenjai C, Waiwut P, Vajragupta O, Reubroycharoen P, Tohda M, Boonyarat C. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2014;75:21-30. https://doi.org/10.1016/j.ejmech.2014.01.020
  37. Rahmati B, Kiasalari Z, Roghani M, Khalili M, Ansari F. Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats. Pharm Biol 2017;55:958-65. https://doi.org/10.1080/13880209.2017.1285320
  38. Mugwagwa AT, Gadaga LL, Pote W, Tagwireyi D. Antiamnesic Effects of a hydroethanolic extract of Crinum macowanii on Scopolamine-induced memory impairment in mice. J Neurodegener Dis 2015;2015:242505.
  39. Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, Zhang H, Sun L, Zhang R, Wang Z. Curcumin improves amyloid β-peptide (1-42) induced a spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 2015;10:e0131525.
  40. SoukhakLari R, Moezi L, Pirsalami F, Ashjazadeh N, Moosavi M. Curcumin ameliorates scopolamine-induced mice memory retrieval deficit and restores hippocampal p-Akt and p-GSK-3β. Eur J Pharmacol 2018;841:28-32. https://doi.org/10.1016/j.ejphar.2018.10.012
  41. Kamali Dolatabadi L, Emamghoreishi M, Namavar MR, Badeli Sarkala H. Curcumin effects on memory impairment and restoration of irregular neuronal distribution in the hippocampal CA1 region after global cerebral ischemia in male rats. Basic Clin Neurosci 2019;10:527-39. https://doi.org/10.32598/bcn.9.10.365
  42. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: targeting the cholinergic system. Curr Neuropharmacol 2016;14:101-15. https://doi.org/10.2174/1570159X13666150716165726
  43. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, Wolozin B. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 2010;340:b5465.
  44. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005;81 Suppl:243S-255S. https://doi.org/10.1093/ajcn/81.1.243S