DOI QR코드

DOI QR Code

SHVC-based Texture Map Coding for Scalable Dynamic Mesh Compression

스케일러블 동적 메쉬 압축을 위한 SHVC 기반 텍스처 맵 부호화 방법

  • Naseong Kwon (Dept. of Computer Engineering, Kwangwoon University) ;
  • Joohyung Byeon (Dept. of Computer Engineering, Kwangwoon University) ;
  • Hansol Choi (Dept. of Computer Engineering, Kwangwoon University) ;
  • Donggyu Sim (Dept. of Computer Engineering, Kwangwoon University)
  • Received : 2023.04.11
  • Accepted : 2023.05.08
  • Published : 2023.05.30

Abstract

In this paper, we propose a texture map compression method based on the hierarchical coding method of SHVC to support the scalability function of dynamic mesh compression. The proposed method effectively eliminates the redundancy of multiple-resolution texture maps by downsampling a high-resolution texture map to generate multiple-resolution texture maps and encoding them with SHVC. The dynamic mesh decoder supports the scalability of mesh data by decoding a texture map having an appropriate resolution according to receiver performance and network environment. To evaluate the performance of the proposed method, the proposed method is applied to V-DMC (Video-based Dynamic Mesh Coding) reference software, TMMv1.0, and the performance of the scalable encoder/decoder proposed in this paper and TMMv1.0-based simulcast method is compared. As a result of experiments, the proposed method effectively improves in performance the average of -7.7% and -5.7% in terms of point cloud-based BD-rate (Luma PSNR) in AI and LD conditions compared to the simulcast method, confirming that it is possible to effectively support the texture map scalability of dynamic mesh data through the proposed method.

본 논문에서는 동적 메쉬 부/복호화 시 스케일러빌리티 기능을 지원하기 위해 SHVC의 계층적 부호화 방식을 기반으로 텍스처 맵을 압축하는 방법을 제안한다. 제안하는 방법은 고해상도 텍스처 맵을 다운샘플링하여 다해상도의 텍스처 맵을 생성하고 이를 SHVC로 부호화함으로써 효과적으로 다해상도 텍스처 맵들의 중복성을 제거한다. 동적 메쉬 복호화기에서는 수신기 성능, 네트워크 환경 등에 따라 적합한 해상도의 텍스처 맵을 복호화하여 메쉬 데이터의 스케일러빌리티를 지원할 수 있도록 한다. 제안하는 방법의 성능을 검증하기 위해 V-DMC (Video-based Dynamic Mesh Coding) 참조 소프트웨어인 TMMv1.0에 제안하는 방법을 적용하고 본 논문에서 제안하는 스케일러블 부/복호화기와 TMMv1.0 기반의 시뮬캐스트 방식의 성능을 비교하였다. 제안하는 방법은 시뮬캐스트 방법 대비 AI, LD 환경에서 Luma BD-rate (Luma PSNR)가 각각 평균 -7.7%, -5.7%의 향상된 결과를 얻어 제안하는 방법을 통해 효과적으로 동적 메쉬 데이터의 텍스처 맵 스케일러빌리티 지원이 가능함을 확인하였다.

Keywords

Acknowledgement

본 연구는 LG 전자의 실시간 XR 및 메타버스 서비스를 위한 Point Cloud Mesh 코딩 기술 개발 및 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업 (NRF-2021R1A2C2092848)의 연구결과로 수행되었음.

References

  1. J. Byeon, H. Choe. D. Sim, "MPEG G-PCC International Standard Technology," Broadcasting and Media Magazine, Vol.26, No.2, pp.31-45, Apr 2021. http://www.kibme.org/resources/journal/20220617110709684.pdf 10709684.pdf
  2. Information technology - Coding of audio-visual objects - Part 16: Animation Framework eXtension (AFX), ISO/IEC 14496-16, 2004. https://www.iso.org/standard/38569.html
  3. Information technology - Coding of audio-visual objects - Part 16: Animation Framework eXtension (AFX) - Amendment 2: Frame-based Animated Mesh Compression (FAMC), ISO/IEC 14496-16:2006/Amd 2, 2009. https://www.iso.org/standard/50471.html
  4. A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk and S. Sullivan, "High-quality streamable freeviewpoint video", in ACM Transaction on Graphics (SIGGRAPH), Vol.34, No.4, pp.1-13, July. 2015. doi: https://doi.org/10.1145/2766945
  5. Draft Requirements for Mesh Coding, ISO/IEC JTC1/SC 29/WG7, N007, Jan. 2021.
  6. WD 1.0 of V-DMC, ISO/IEC JTC/SC29/WG7, MDS22184, Oct. 2022.
  7. K. Mammou, J. Kim, A. Tourapis, D. Podborski, K. Kolarov, [V-CG] Apple's Dynamic Mesh Coding CfP Response, ISO/IEC JTC1/SC29/ WG7 m59281, Apr. 2022.
  8. CfP for Dynamic Mesh Coding, ISO/IEC JTC1/SC 29/WG7, N231, Nov. 2021.
  9. V-Mesh Test Model v1, ISO/IEC JTC/SC29/WG7, N00404, July. 2022.
  10. J. M. Boyce. Y. Ye, J. Chen, and A. K. Ramasubramonian, "Overview of SHVC: Scalable Extensions of the High Efficiency Video Coding Standard", IEEE Transactions on Circuits and Systems for Video Technology, Vol.26, No.1, pp.20-34, July 2016. doi: https://doi.org/10.1109/tcsvt.2015.2461951
  11. UVAtlas, https://github.com/microsoft/UVAtlas
  12. Draco, https://github.com/google/draco
  13. G. Sullivan, J. Ohm, W. Han, and T. Wiegand, "Overview of the high efficiency video coding (HEVC) standard," Institute of Electrical and Electronics Engineers (IEEE) Transactions on circuits and systems for video technology, Vol.22, No.12, pp. 1649-1668, Dec. 2012. doi: https://doi.org/10.1109/tcsvt.2012.2221191
  14. B. Bross, J. Chen, S. Liu, and Y.-K. Wang, "Versatile Video Coding (Draft 10)," JVET-S2001, July. 2020.
  15. J. Dong, Y. He. Y. Ye, "Downsampling Filters for Anchor Generation for Scalable Extensions of HEVC," Tech. Rep. M24499, ISO/IEC/JTC1/SC29/WG11 MPEG, Geneva, Switzerland, May. 2012.
  16. G. Barroux, J. Chen, J. Boyce, Y. Ye, and M. M. Hannuksela, JCTVC-V1007, "SHVC Test Model 11 (SHM 11) Introduction and Encoder Description", Feb. 2015.
  17. Information Technology - Dynamic Adaptive Streaming over HTTP (DASH)-Part 1: Media Presentation Description and Segment Format, ISO/IEC 23009-1, 2014. https://www.iso.org/standard/65274.html
  18. TMM, http://mpegx.int-evry.fr/software/MPEG/dmc/mpeg-vmesh-tm
  19. HM, https://vcgit.hhi.fraunhofer.de/jvet/HM
  20. Mpeg-pcc-renderer, http://mpegx.int-evry.fr/software/MPEG/PCC/mpegpcc-renderer
  21. G. Bjontegaard, "Calculation of average PSNR differences between RDcurves," Tech. Rep. VCEGM33, Video Coding Experts Group (VCEG), 2001.
  22. Heckbert, Paul S. "Survey of texture mapping," IEEE computer graphics and applications 6.11, pp. 56-67, 1986. doi: https://doi.org/10.1109/mcg.1986.276672