DOI QR코드

DOI QR Code

바이오차 비드를 이용한 수용액에서 Pb의 효율적인 처리효율 평가

Evaluation of Efficient Pb Removal from Aqueous Solutions using Biochar Beads

  • 박유진 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원) ;
  • 이재훈 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원) ;
  • 노준석 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원) ;
  • 최아영 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원) ;
  • 김신실 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원) ;
  • 이슬린 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원) ;
  • 박종환 (동아대학교 생명자원산업학과) ;
  • 서동철 (경상국립대학교 응용생명과학부(BK21 Four) & 농업생명과학연구원)
  • Yu-Jin Park (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jae-Hoon Lee (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jun-Suk Rho (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ah-Young Choi (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Sin-Sil Kim (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Seul-Rin Lee (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jong-Hwan Park (Department of Life Resources Industry, Dong-A University) ;
  • Dong-Cheol Seo (Division of Applied Life Science(BK21 Four) & Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2023.03.13
  • 심사 : 2023.03.24
  • 발행 : 2023.03.31

초록

본 연구는 저비용 고효율 중금속 흡착제를 개발하기 위해 바이오매스 전소발전소에서 배출된 바이오차를 이용하여 바이오차 비드를 다양한 혼합조건으로 제조하고, 등온흡착과 동적흡착 모델을 활용하여 Pb 처리 효율을 조사하였다. 바이오차 비드의 Pb 흡착 효과를 확인하기 위해 다양한 조건에서 흡착실험을 수행하였다. Freundlich 등온흡착 모델로 흡착특성을 분석해 본 결과 Pb에 대한 바이오차 비드의 흡착패턴은 L형이었다. Langmuir 등온흡착 모델을 통한 바이오차 비드의 최대 흡착량(a)은 2.5% 바이오차 비드(2.5-BB) 처리구에서 28.736 mg/g로 가장 많았다. Pb에 대한 바이오차 비드의 동적흡착 특성을 조사한 결과 반응 8시간에 포화에 도달하였고, 화학적 흡착이 우세하였다. Pb 흡착량은 Pb 용액의 pH가 3일 때 가장 낮았으며, pH 4-5.5에서는 유사한 Pb 흡착량을 보였다. 2.5% 바이오차 비드(2.5-BB) 처리구의 투입량이 26.6 g/L일 때 Pb 제거 효율이 97.9%로 가장 높았다. 이상의 결과를 미루어 볼때, 바이오차 비드는 바이오차의 장점을 살린 저비용 고효율 흡착제로서 활용이 가능할 것으로 판단된다.

The fine particulate structure of biochar limits its use as a heavy metal adsorbent, and makes separation of the biochar from the solution technically challenging, thereby reducing recovery of the heavy metals. To address this issue, this study prepared biochar beads under various mixing conditions and investigated their efficiency in removing Pb from aqueous solutions using adsorption models. The biochar beads were produced by mixing alginate and biochar at different ratios: alginate bead (AB), 1% biochar + bead (1-BB), 2.5% biochar + bead (2.5-BB), and 5% biochar + bead (5-BB). The results revealed that the Freundlich isothermal adsorption pattern of the biochar beads to Pb was of the L-type. The highest Langmuir isothermal adsorption capacity (28.736 mg/g) was observed in the 2.5-BB treatment. The dominant mechanism among the kinetic adsorption characteristics of biochar beads for Pb was chemical adsorption. Additionally, the optimal pH range for Pb adsorption was found to be between 4 and 5.5. The highest Pb removal efficiency (97.9%) was achieved when 26.6 g/L of biochar beads were used. These findings suggest that biochar beads are an economical and highly efficient adsorbent that enables separation and recovery of fine biochar particles.

키워드

과제정보

This work was support by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Livestock Industrialization Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project No. 121034-3).

참고문헌

  1. Ren H, Gao Z, Wu D, Jiang J. Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydrate Polymers, 137, 402-409. https://doi.org/101016/j.carbpol.2015.11.002. 101016/j.carbpol.2015.11.002
  2. Cheng H, Hu Y (2010) Lead(Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environmental Pollution, 158, 1134-1146. https://doi.org/10.1016/j.envpol.2009.12.028.
  3. Park JJ, Kim KJ, Park JS, Yoo SM, Park KS, Seok KS, Shin HS, Song GJ, Kim YH (2013) Characterization of lead isotope emission profiles in non-ferrous smelters in South Korea. Analytical Science and Technology, 26(5), 333-339. https://doi.org/10.5806/AST.2013.26.5.333.
  4. Choi JW, Kim YK, Kim MG (2020) Synthesis of graphene oxide/polyacrylic acid/alginate beads for Pb2+ removal in aqueous solution. Korea Society of Environmental Administration, 26(1), 17-24.
  5. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2016) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 4(1), 37-59. https://doi.org/10.1002/cben.201600010.
  6. Lakherwal D (2014) Adsorption of heavy metals: a review. International Journal of Environmental Research and Development, 4(1), 41-48.
  7. Lin Y, Sohi SP, Liu S, Guan J, Zhou J, Chen J (2019) Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. Journal of Environmental Management, 235, 276-281. https://doi.org/10.1016/j.jenvman.2019.01.045.
  8. Eom JH, Park JH, Kim SH, Kim YJ, Ryu SK, Seo DC (2019) Evaluation of Cd adsorption characteristics by microplastic polypropylene in aqueous solution. Korean Journal of Environmental Agriculture, 38(2), 83-88. https://doi.org/10.5338/KJEA.2019.38.2.16.
  9. Wang B, Gao B, Wan Y (2018) Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). Journal of Industrial and Engineering Chemistry, 61, 161-168. https://doi.org/10.1016/j.jiec.2017.12.013.
  10. Wang Q, Wang B, Lee X, Lehmann J, Gao B (2018) Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Science of the Total Environment, 634, 188-194. https://doi.org/10.1016/j.scitotenv.2018.03.189.
  11. Ye Q, Li Q, Li X (2022) Removal of heavy metals from wastewater using biochars: adsorption and mechanisms. Environmental Pollutants and Bioavailability, 34(1), 385-394. https://doi.org/10.1080/26395940.2022.2120542.
  12. Mohan D, Jr CUP, Bricka M, Smith F, Yancey B, Mohanmmad J, Steele PH, Alexandre-Franco MF, Gomex-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1), 57-73. https://doi.org/10.1016/j.jcis.2007.01.020.
  13. Yan L, Kong L, Qu Z, Li L, Shen G (2014) Magnetic biochar decorated with ZnS nanocrystals for Pb(II) removal. ACS Sustainable Chemistry & Engineering, 3(1), 125-132. https://doi.org/10.1021/sc500619r.
  14. Ogura AP, Lima JZ, Marques JP, Sousa LM, Rodrigues VGS, Espindola ELG (2021) A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. Journal of Environmental Management, 300, 113753. https://doi.org/10.1016/j.jenvman.2021.113753.
  15. Yu T, Wang L, Ma F, Wang Y, Bai S (2020) A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms. Journal of Hazardous Materials, 384, 121326. https://doi.org/10.1016/j.jhazmat.2019.121326.
  16. Burdick JA, Stevens MM (2005) Biomedical hydrogels, in: Hench L, Jones J, Biomaterials, Artificial Organs and Tissue Engineering. pp. 107-115, Woodhead Publishing, UK.
  17. Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G (2009) Co(II) removal by magnetic alginate beads containing Cyanex 272®. Jouranl of Hazardous Materials, 166(2-3), 1043-1049. https://doi.org/10.1016/j.jhazmat.2008.11.109.
  18. Biswas S, Sen TK, Yeneneh AM, Meikap BC (2018) Synthesis and characterization of a novel Ca-alginate-biochar composite as efficient zinc (Zn2+) adsorbent: Thermodynamics, process design, mass transfer and isotherm modeling. Separation Science and Technology, 54(7), 1106-1124. https://doi.org/10.1080/01496395.2018.1527353.
  19. Kuha SP, Pfister RM (1989) Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloea ramigera. Applied Microbiology and Biotechnology, 31, 613-618. https://doi.org/10.1007/BF00270805.
  20. Abas SNA, Ismail MHS, Siajam SI, Kamal ML (2015) Comparative study on adsorption of Pb(II) ions by alginate beads and mangrove-alginate composite beads. Advanced Materials Research, 1113, 248-254. https://doi.org/10.4028/www.scientific.net/AMR.1113.248.
  21. Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munox JA (2008) Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. Journal of Hazardous Materials, 163(2-3), 555-562. https://doi.org/10.1016/j.jhazmat.2008.07.015.
  22. Kumari S, Mahapatra S, Das S (2017) Ca-alginate as a support matrix for Pb(II) biosorption with immobilized biofilm associated extracellular polymeric substances of Pseudomonas aeruginosa N6P6. Chemical Engineering Journal, 328, 556-566. https://doi.org/10.1016/j.cej.2017.07.102.
  23. Arica MY, Arpa C, Ergene A, Bayramoglu G, Genc O (2003) Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers, 52, 167-174. https://doi.org/10.1016/S0144-8617(02)00307-7.
  24. Qu P, Li Y, Huang H, Chen J, Yu Z, Huang J, Gao B (2020) Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+. Journal of Hazardous Materials, 396, 122664. https://doi.org/10.1016/j.jhazmat.2020.122664.
  25. Boahen G, Sewu DD, Woo SH (2019) Preparation and characterization of alginate-kelp biochar composite hydrogel bead for dye removal. Environmental Science and Pollution Research, 26(32), 33030-33042. https://doi.org/10.1007/s11356-019-06421-2.
  26. Caban RT, Olivencia CAV, Camilde NM (2019) Adsorption of Ni2+ and Cd2+ from water by calcium alginate/spent coffee grounds composite beds. Applied Sciences, 9(21), 4531. https://doi.org/10.3390/app9214531.
  27. Sarfaraz Q, Silva LSD, Drescher GL, Zafar M, Severo FF, Kokkonen A, Molin GD, Shafi MI, Shafique Q, Solaiman ZM (2020) Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Scientific Reports, 10(1), 955. https://doi.org/10.1021/acsami.1c07954.
  28. Na CK, Han MY, Park HJ (2011) Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(1). Journal of Korean Society of Environmental Engineers, 33(8), 606-616. https://doi.org/10.4491/KSEE.2011.33.8.606.
  29. Na CK, Park HJ (2011) Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(II). Journal of Korean Society of Environmental Engineers, 33(11), 804-811. https://doi.org/10.4491/KSEE.2011.33.11.804.
  30. Crini G, Badot PM (2007) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4), 399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.
  31. Taty-Costodes VC, Fauduet H, Porte C, Delacroix (2003) Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105(1-3), 121-142. https://doi.org/10.1016/j.jhazmat.2003.07.009.
  32. Yoon HS, Kang IJ (2021) Fabrication of chitosan nanoparticles with lactococcus lactis for the removal of phthalate endocrine hormone. Korean Chemical Engineering Research, 59(1), 21-34. https://doi.org/10.9713/kcer.2021.59.1.21.
  33. Shin EW, Rowell RM (2005) Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement. Chemosphere, 60(8), 1054-1061. https://doi.org/10.1016/j.chemosphere.2005.01.017.
  34. Shin EW, Thuong NTL, Yoo IK (2006) Adsorption behavior of Pb2+ ions on alginate beads and capsules. Korean Chemical Engineering Research, 45(2), 166-171. https://doi.org/10.1021/ie050781i
  35. Um BH, Jo SW, Park SJ (2014) Pb(II) Removal from aqueous solutions using pinewood and oakwood. Journal of the Korean Wood Science and Technology, 42(4), 450-459. https://doi.org/10.5658/WOOD.2014.42.4.450.
  36. Kolodynska D, Wnetrzak R, Leahy JJ, Hayes MHB, Kwapinski W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295-305. https://doi.org/10.1016/j.cej.2012.05.025.
  37. Yasir N, Khan AS, Hassan MF, Ibrahim TH, Khamis MI, Nancarrow P (2022) Ionic liquid agar-alginate beads as a sustainable phenol adsorbent. Polymers, 14(5), 984. https://doi.org/10.3390/polym14050984.