DOI QR코드

DOI QR Code

Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity

  • Sung-Ho Chang (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Chung Gyu Park (Department of Biomedical Sciences, Seoul National University College of Medicine)
  • 투고 : 2023.10.12
  • 심사 : 2023.11.12
  • 발행 : 2023.12.31

초록

Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (Daejun, Korea) through grants 2020R1A2C1100163 awarded to Sung-Ho Chang.

참고문헌

  1. Saler M, Caliogna L, Botta L, Benazzo F, Riva F, Gastaldi G. hASC and DFAT, multipotent stem cells for regenerative medicine: a comparison of their potential differentiation in vitro. Int J Mol Sci 2017;18:2699.
  2. Weiss AR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 2019;10:1191.
  3. Lynggaard CD, Gronhoj C, Christensen R, Fischer-Nielsen A, Melchiors J, Specht L, Andersen E, Mortensen J, Oturai P, Barfod GH, et al. Intraglandular off-the-shelf allogeneic mesenchymal stem cell treatment in patients with radiation-induced xerostomia: a safety study (MESRIX-II). Stem Cells Transl Med 2022;11:478-489. https://doi.org/10.1093/stcltm/szac011
  4. Chen CF, Hu CC, Wu CT, Wu HH, Chang CS, Hung YP, Tsai CC, Chang Y. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial. Stem Cell Res Ther 2021;12:562.
  5. Meucci MC, Reinders ME, Groeneweg KE, Bezstarosti S, Ajmone Marsan N, Bax JJ, De Fijter JW, Delgado V. Cardiovascular effects of autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal in renal transplant recipients: an analysis of the randomized triton study. J Am Heart Assoc 2021;10:e023300.
  6. Mo Y, Kim Y, Bang JY, Jung J, Lee CG, Elias JA, Kang HR. Mesenchymal stem cells attenuate asthmatic inflammation and airway remodeling by modulating macrophages/monocytes in the il-13-overexpressing mouse model. Immune Netw 2022;22:e40.
  7. Wang Y, Tian M, Wang F, Heng BC, Zhou J, Cai Z, Liu H. Understanding the immunological mechanisms of mesenchymal stem cells in allogeneic transplantation: From the aspect of major histocompatibility complex class i. Stem Cells Dev 2019;28:1141-1150. https://doi.org/10.1089/scd.2018.0256
  8. Chang SH, Park CG. Allogeneic ADSCs induce CD8 T cell-mediated cytotoxicity and faster cell death after exposure to xenogeneic serum or proinflammatory cytokines. Exp Mol Med 2019;51:1-10.
  9. Mukonoweshuro B, Brown CJ, Fisher J, Ingham E. Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng 2014;5:2041731414534255.
  10. Li C, Chen S, Zhou Y, Zhao Y, Liu P, Cai J. Application of induced pluripotent stem cell transplants: autologous or allogeneic? Life Sci 2018;212:145-149. https://doi.org/10.1016/j.lfs.2018.09.057
  11. Karahan GE, Claas FH, Heidt S. Pre-existing alloreactive t and b cells and their possible relevance for pretransplant risk estimation in kidney transplant recipients. Front Med (Lausanne) 2020;7:340.
  12. Lefaucheur C, Loupy A. Antibody-mediated rejection of solid-organ allografts. N Engl J Med 2018;379:2580-2582.
  13. Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A. Crispr/cas9-based engineering of the epigenome. Cell Stem Cell 2017;21:431-447. https://doi.org/10.1016/j.stem.2017.09.006
  14. Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019;10:87.
  15. Pei WD, Zhang Y, Yin TL, Yu Y. Epigenome editing by CRISPR/Cas9 in clinical settings: possibilities and challenges. Brief Funct Genomics 2020;19:215-228. https://doi.org/10.1093/bfgp/elz035
  16. Scheiner ZS, Talib S, Feigal EG. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 2014;289:4571-4577. https://doi.org/10.1074/jbc.R113.509588
  17. Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, Mawatari A, Glasser MF, Shiina T, Ishigaki H, et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat Commun 2017;8:385.
  18. Embgenbroich M, Burgdorf S. Current concepts of antigen cross-presentation. Front Immunol 2018;9:1643.
  19. Arzi B, Clark KC, Sundaram A, Spriet M, Verstraete FJ, Walker NJ, Loscar MR, Fazel N, Murphy WJ, Vapniarsky N, et al. Therapeutic efficacy of fresh, allogeneic mesenchymal stem cells for severe refractory feline chronic gingivostomatitis. Stem Cells Transl Med 2017;6:1710-1722. https://doi.org/10.1002/sctm.17-0035
  20. Arzi B, Mills-Ko E, Verstraete FJ, Kol A, Walker NJ, Badgley MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL. Therapeutic efficacy of fresh, autologous mesenchymal stem cells for severe refractory gingivostomatitis in cats. Stem Cells Transl Med 2016;5:75-86. https://doi.org/10.5966/sctm.2015-0127
  21. Kamen DL, Wallace C, Li Z, Wyatt M, Paulos C, Wei C, Wang H, Wolf BJ, Nietert PJ, Gilkeson G. Safety, immunological effects and clinical response in a phase I trial of umbilical cord mesenchymal stromal cells in patients with treatment refractory SLE. Lupus Sci Med 2022;9:e000704.
  22. Jolly M, Garris CP, Mikolaitis RA, Jhingran PM, Dennis G, Wallace DJ, Clarke A, Dooley MA, Parke A, Strand V, et al. Development and validation of the Lupus Impact Tracker: a patient-completed tool for clinical practice to assess and monitor the impact of systemic lupus erythematosus. Arthritis Care Res (Hoboken) 2014;66:1542-1550. https://doi.org/10.1002/acr.22349
  23. Hernigou P, Guissou I, Homma Y, Poignard A, Chevallier N, Rouard H, Flouzat Lachaniette CH. Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. Int Orthop 2015;39:1639-1643. https://doi.org/10.1007/s00264-015-2738-2
  24. Oliveira RL, Chagastelles PC, Sesterheim P, Pranke P. In vivo immunogenic response to allogeneic mesenchymal stem cells and the role of preactivated mesenchymal stem cells cotransplanted with allogeneic islets. Stem Cells Int 2017;2017:9824698.
  25. Coemans M, Susal C, Dohler B, Anglicheau D, Giral M, Bestard O, Legendre C, Emonds MP, Kuypers D, Molenberghs G, et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int 2018;94:964-973. https://doi.org/10.1016/j.kint.2018.05.018
  26. Pan GH, Chen Z, Xu L, Zhu JH, Xiang P, Ma JJ, Peng YW, Li GH, Chen XY, Fang JL, et al. Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study. Oncotarget 2016;7:12089-12101. https://doi.org/10.18632/oncotarget.7725
  27. Dreyer GJ, Groeneweg KE, Heidt S, Roelen DL, van Pel M, Roelofs H, Huurman VA, Bajema IM, Moes DJ, Fibbe WE, et al. Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: the Neptune study, a phase I single-center study. Am J Transplant 2020;20:2905-2915. https://doi.org/10.1111/ajt.15910
  28. Reinders ME, Groeneweg KE, Hendriks SH, Bank JR, Dreyer GJ, de Vries AP, van Pel M, Roelofs H, Huurman VA, Meij P, et al. Autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: the randomized prospective, single-center, open-label TRITON study. Am J Transplant 2021;21:3055-3065. https://doi.org/10.1111/ajt.16528
  29. Veceric-Haler Z, Sever M, Kojc N, Halloran PF, Bostjancic E, Mlinsek G, Oblak M, Pozenel P, Svajger U, Hartman K, et al. Autologous mesenchymal stem cells for treatment of chronic active antibody-mediated kidney graft rejection: report of the phase i/ii clinical trial case series. Transpl Int 2022;35:10772.
  30. Kol A, Wood JA, Carrade Holt DD, Gillette JA, Bohannon-Worsley LK, Puchalski SM, Walker NJ, Clark KC, Watson JL, Borjesson DL. Multiple intravenous injections of allogeneic equine mesenchymal stem cells do not induce a systemic inflammatory response but do alter lymphocyte subsets in healthy horses. Stem Cell Res Ther 2015;6:73.
  31. Owens SD, Kol A, Walker NJ, Borjesson DL. Allogeneic mesenchymal stem cell treatment induces specific alloantibodies in horses. Stem Cells Int 2016;2016:5830103.
  32. Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, Miki K, Okita K, Yoshida Y, Shiina T, et al. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem Cell Reports 2016;6:312-320. https://doi.org/10.1016/j.stemcr.2016.01.012
  33. Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 2014;4:3594.
  34. Chang SH, Kim HJ, Park CG. Allogeneic ADSCs induce the production of alloreactive memory-CD8 T cells through HLA-ABC antigens. Cells 2020;9:1246.
  35. Joswig AJ, Mitchell A, Cummings KJ, Levine GJ, Gregory CA, Smith R 3rd, Watts AE. Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model. Stem Cell Res Ther 2017;8:42.
  36. Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyuz L, Reinke P, Volk HD, Schmueck-Henneresse M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 2019;25:242-248. https://doi.org/10.1038/s41591-018-0204-6
  37. Arruda VR, Favaro P, Finn JD. Strategies to modulate immune responses: a new frontier for gene therapy. Mol Ther 2009;17:1492-1503. https://doi.org/10.1038/mt.2009.150
  38. Deuse T, Hu X, Agbor-Enoh S, Koch M, Spitzer MH, Gravina A, Alawi M, Marishta A, Peters B, Kosaloglu-Yalcin Z, et al. De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat Biotechnol 2019;37:1137-1144. https://doi.org/10.1038/s41587-019-0227-7
  39. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010;464:610-614. https://doi.org/10.1038/nature08802
  40. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 1997;94:514-519. https://doi.org/10.1073/pnas.94.2.514
  41. Badr Eslam R, Croce K, Mangione FM, Musmann R, Leopold JA, Mitchell RN, Waxman AB. Persistence and proliferation of human mesenchymal stromal cells in the right ventricular myocardium after intracoronary injection in a large animal model of pulmonary hypertension. Cytotherapy 2017;19:668-679. https://doi.org/10.1016/j.jcyt.2017.03.002
  42. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012;308:2369-2379. https://doi.org/10.1001/jama.2012.25321
  43. Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013;156:99-106. https://doi.org/10.1016/j.vetimm.2013.09.003
  44. Isakova IA, Lanclos C, Bruhn J, Kuroda MJ, Baker KC, Krishnappa V, Phinney DG. Allo-reactivity of mesenchymal stem cells in rhesus macaques is dose and haplotype dependent and limits durable cell engraftment in vivo. PLoS One 2014;9:e87238.
  45. Colbath AC, Dow SW, Hopkins LS, Phillips JN, McIlwraith CW, Goodrich LR. Allogeneic vs. autologous intra-articular mesenchymal stem cell injection within normal horses: clinical and cytological comparisons suggest safety. Equine Vet J 2020;52:144-151. https://doi.org/10.1111/evj.13136
  46. Hwang JW, Lee NK, Yang JH, Son HJ, Bang SI, Chang JW, Na DL. A comparison of immune responses exerted following syngeneic, allogeneic, and xenogeneic transplantation of mesenchymal stem cells into the mouse brain. Int J Mol Sci 2020;21:3052.
  47. Rowland AL, Miller D, Berglund A, Schnabel LV, Levine GJ, Antczak DF, Watts AE. Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting. Stem Cells Transl Med 2021;10:694-710. https://doi.org/10.1002/sctm.20-0435
  48. Hoornaert CJ, Le Blon D, Quarta A, Daans J, Goossens H, Berneman Z, Ponsaerts P. Concise review: innate and adaptive immune recognition of allogeneic and xenogeneic cell transplants in the central nervous system. Stem Cells Transl Med 2017;6:1434-1441. https://doi.org/10.1002/sctm.16-0434
  49. Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol 2014;5:299.
  50. Tiruppathi C, Finnegan A, Malik AB. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci U S A 1996;93:250-254. https://doi.org/10.1073/pnas.93.1.250
  51. Haque N, Kasim NH, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci 2015;11:324-334.  https://doi.org/10.7150/ijbs.10567
  52. Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014;32:252-260. https://doi.org/10.1038/nbt.2816
  53. Stoddard-Bennett T, Pera RR. Stem cell therapy for Parkinson's disease: safety and modeling. Neural Regen Res 2020;15:36-40. https://doi.org/10.4103/1673-5374.264446
  54. Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M, Bonig H, Henrich D, Marzi I. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg 2018;44:649-665. https://doi.org/10.1007/s00068-018-0906-y
  55. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 2012;11:147-152. https://doi.org/10.1016/j.stem.2012.07.014
  56. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, Huang M, Yi X, Liang M, Wang Y, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med 2020;26:732-740. https://doi.org/10.1038/s41591-020-0840-5
  57. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019;25:249-254. https://doi.org/10.1038/s41591-018-0326-x
  58. Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 2015;6:161.
  59. Dudek AM, Porteus MH. Answered and unanswered questions in early-stage viral vector transduction biology and innate primary cell toxicity for ex-vivo gene editing. Front Immunol 2021;12:660302.
  60. Zha S, Tay JC, Zhu S, Li Z, Du Z, Wang S. Generation of mesenchymal stromal cells with low immunogenicity from human PBMC-derived beta2 microglobulin knockout induced pluripotent stem cells. Cell Transplant 2020;29:963689720965529.
  61. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 2016;16:7-19. https://doi.org/10.1038/nrc.2015.5
  62. Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK cell-based immunotherapies in cancer. Immune Netw 2020;20:e14.
  63. Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, Prunkard D, Colunga AG, Hanafi LA, Clegg DO, et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol 2017;35:765-772. https://doi.org/10.1038/nbt.3860
  64. Wang C, Wang Z, Yao T, Zhou J, Wang Z. The immune-related role of beta-2-microglobulin in melanoma. Front Oncol 2022;12:944722.
  65. Zhao Y, Cao Y, Chen Y, Wu L, Hang H, Jiang C, Zhou X. B2M gene expression shapes the immune landscape of lung adenocarcinoma and determines the response to immunotherapy. Immunology 2021;164:507-523. https://doi.org/10.1111/imm.13384
  66. Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, Ruella M, Savoldo B, Shah NN, Turtle CJ, et al. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol 2021;18:379-393. https://doi.org/10.1038/s41571-021-00476-2
  67. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, Forman SJ. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 2010;16:1245-1256. https://doi.org/10.1016/j.bbmt.2010.03.014
  68. Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2006;107:2294-2302. https://doi.org/10.1182/blood-2005-08-3503
  69. Zhou X, Dotti G, Krance RA, Martinez CA, Naik S, Kamble RT, Durett AG, Dakhova O, Savoldo B, Di Stasi A, et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood 2015;125:4103-4113. https://doi.org/10.1182/blood-2015-02-628354
  70. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011;365:1673-1683. https://doi.org/10.1056/NEJMoa1106152
  71. Wiebking V, Patterson JO, Martin R, Chanda MK, Lee CM, Srifa W, Bao G, Porteus MH. Metabolic engineering generates a transgene-free safety switch for cell therapy. Nat Biotechnol 2020;38:1441-1450. https://doi.org/10.1038/s41587-020-0580-6
  72. Kagoya Y, Guo T, Yeung B, Saso K, Anczurowski M, Wang CH, Murata K, Sugata K, Saijo H, Matsunaga Y, et al. Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol Res 2020;8:926-936. https://doi.org/10.1158/2326-6066.CIR-18-0508
  73. Halm D, Leibig N, Martens J, Stark GB, Gross T, Zimmermann S, Finkenzeller G, Lampert F. Direct comparison of the immunogenicity of major histocompatibility complex-I and -II deficient mesenchymal stem cells in vivo. Biol Chem 2021;402:693-702. https://doi.org/10.1515/hsz-2020-0306
  74. Wang X, Lu M, Tian X, Ren Y, Li Y, Xiang M, Chen S. Diminished expression of major histocompatibility complex facilitates the use of human induced pluripotent stem cells in monkey. Stem Cell Res Ther 2020;11:334.
  75. Mattapally S, Pawlik KM, Fast VG, Zumaquero E, Lund FE, Randall TD, Townes TM, Zhang J. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J Am Heart Assoc 2018;7:e010239.
  76. Lee J, Sheen JH, Lim O, Lee Y, Ryu J, Shin D, Kim YY, Kim M. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Sci Rep 2020;10:17753.
  77. Rawat S, Dadhwal V, Mohanty S. Dexamethasone priming enhances stemness and immunomodulatory property of tissue-specific human mesenchymal stem cells. BMC Dev Biol 2021;21:16.
  78. Kot M, Baj-Krzyworzeka M, Szatanek R, Musial-Wysocka A, Suda-Szczurek M, Majka M. The importance of HLA assessment in "off-the-shelf " allogeneic mesenchymal stem cells based-therapies. Int J Mol Sci 2019;20:5680.
  79. Shah K, Shah N, Ghassemi F, Ly C, George T, Lutz C, Sumer H. Alloreactivity of allogeneic mesenchymal stem/stromal cells and other cellular therapies: a concise review. Stem Cells Int 2022;2022:9589600.
  80. Mo F, Watanabe N, McKenna MK, Hicks MJ, Srinivasan M, Gomes-Silva D, Atilla E, Smith T, Ataca Atilla P, Ma R, et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat Biotechnol 2021;39:56-63. https://doi.org/10.1038/s41587-020-0601-5
  81. Srinivasan A, Sathiyanathan P, Yin L, Liu TM, Lam A, Ravikumar M, Smith RA, Loh HP, Zhang Y, Ling L, et al. Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy 2022;24:456-472. https://doi.org/10.1016/j.jcyt.2021.11.009
  82. Juneja T, Kazmi M, Mellace M, Saidi RF. Utilization of Treg cells in solid organ transplantation. Front Immunol 2022;13:746889.
  83. Proics E, David M, Mojibian M, Speck M, Lounnas-Mourey N, Govehovitch A, Baghdadi W, Desnouveaux J, Bastian H, Freschi L, et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Gene Ther 2023;30:309-322. https://doi.org/10.1038/s41434-022-00358-x
  84. Atif M, Conti F, Gorochov G, Oo YH, Miyara M. Regulatory T cells in solid organ transplantation. Clin Transl Immunology 2020;9:e01099.