DOI QR코드

DOI QR Code

Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection

  • Kee Woong Kwon (Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Tae Gun Kang (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Ara Lee (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Seung Mo Jin (SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Yong Taik Lim (SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU)) ;
  • Sung Jae Shin (Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Sang-Jun Ha (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University)
  • 투고 : 2022.07.12
  • 심사 : 2023.01.17
  • 발행 : 2023.04.30

초록

Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.

키워드

과제정보

This work was supported by the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HV20C0144, HV20C0139, and HV22C0079). This study was also supported in part by the Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2021 (project no.: 2021-12-0156 to T.G.K). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

참고문헌

  1. Cohen A, Mathiasen VD, Schon T, Wejse C. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J 2019;54:54.
  2. World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization; 2021. 
  3. Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It takes a village: the multifaceted immune response to Mycobacterium tuberculosis infection and vaccine-induced immunity. Front Immunol 2022;13:840225.
  4. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, Whiting PF, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 2014;58:470-480. https://doi.org/10.1093/cid/cit790
  5. Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006;367:1173-1180. https://doi.org/10.1016/S0140-6736(06)68507-3
  6. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, Mabwe S, Makhethe L, Erasmus M, Toefy A, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med 2018;379:138-149. https://doi.org/10.1056/NEJMoa1714021
  7. Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, Ayles HM, Henostroza G, Thienemann F, Scriba TJ, et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 2018;379:1621-1634. https://doi.org/10.1056/NEJMoa1803484
  8. Billeskov R, Elvang TT, Andersen PL, Dietrich J. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS One 2012;7:e39909.
  9. Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba RJ, Orme IM, Skeiky YA, Alderson MR, Cowgill KD, et al. Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 2009;106:2301-2306. https://doi.org/10.1073/pnas.0712077106
  10. Ullah N, Hao L, Wu Y, Zhang Y, Lei Q, Banga Ndzouboukou JL, Lin X, Fan X. Differential immunogenicity and protective efficacy elicited by MTO- and DMT-adjuvanted CMFO subunit vaccines against Mycobacterium tuberculosis infection. J Immunol Res 2020;2020:2083793.
  11. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013;19:1597-1608. https://doi.org/10.1038/nm.3409
  12. Orr MT, Fox CB, Baldwin SL, Sivananthan SJ, Lucas E, Lin S, Phan T, Moon JJ, Vedvick TS, Reed SG, et al. Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. J Control Release 2013;172:190-200.  https://doi.org/10.1016/j.jconrel.2013.07.030
  13. Moreno-Mendieta SA, Rocha-Zavaleta L, Rodriguez-Sanoja R. Adjuvants in tuberculosis vaccine development. FEMS Immunol Med Microbiol 2010;58:75-84. https://doi.org/10.1111/j.1574-695X.2009.00629.x
  14. Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 2016;102:73-82. https://doi.org/10.1016/j.addr.2015.11.012
  15. Leroux-Roels I, Forgus S, De Boever F, Clement F, Demoitie MA, Mettens P, Moris P, Ledent E, Leroux-Roels G, Ofori-Anyinam O; M72 Study Group. Improved CD4+ T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 2013;31:2196-2206. https://doi.org/10.1016/j.vaccine.2012.05.035
  16. Kim SJ, Bai GH, Lee H, Kim HJ, Lew WJ, Park YK, Kim Y. Transmission of Mycobacterium tuberculosis among high school students in Korea. Int J Tuberc Lung Dis 2001;5:824-830.
  17. Kim WS, Kim JS, Kim HM, Kwon KW, Eum SY, Shin SJ. Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis. Sci Rep 2018;8:14411.
  18. Kim WS, Kim JS, Cha SB, Kim H, Kwon KW, Kim SJ, Han SJ, Choi SY, Cho SN, Park JH, et al. Mycobacterium tuberculosis Rv3628 drives Th1-type T cell immunity via TLR2-mediated activation of dendritic cells and displays vaccine potential against the hyper-virulent Beijing K strain. Oncotarget 2016;7:24962-24982. https://doi.org/10.18632/oncotarget.8771
  19. Pedersen GK, Andersen P, Christensen D. Immunocorrelates of CAF family adjuvants. Semin Immunol 2018;39:4-13. https://doi.org/10.1016/j.smim.2018.10.003
  20. Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 1994;62:2536-2544. https://doi.org/10.1128/iai.62.6.2536-2544.1994
  21. Kwon KW, Lee A, Larsen SE, Baldwin SL, Coler RN, Reed SG, Cho SN, Ha SJ, Shin SJ. Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Sci Rep 2019;9:15560.
  22. Jeon BY, Kim SC, Eum SY, Cho SN. The immunity and protective effects of antigen 85A and heat-shock protein X against progressive tuberculosis. Microbes Infect 2011;13:284-290. https://doi.org/10.1016/j.micinf.2010.11.002
  23. Kang TG, Kwon KW, Kim K, Lee I, Kim MJ, Ha SJ, Shin SJ. Viral coinfection promotes tuberculosis immunopathogenesis by type I IFN signaling-dependent impediment of Th1 cell pulmonary influx. Nat Commun 2022;13:3155.
  24. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed SG, Morris SL, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007;13:843-850. https://doi.org/10.1038/nm1592
  25. Rosenbaum P, Tchitchek N, Joly C, Rodriguez Pozo A, Stimmer L, Langlois S, Hocini H, Gosse L, Pejoski D, Cosma A, et al. Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response. Front Immunol 2021;12:645210.
  26. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba TJ, Akite EJ, Ayles HM, Bollaerts A, et al. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 2019;381:2429-2439. https://doi.org/10.1056/NEJMoa1909953
  27. Ganguly N, Siddiqui I, Sharma P. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis (Edinb) 2008;88:510-517. https://doi.org/10.1016/j.tube.2008.05.002
  28. Coppola M, Villar-Hernandez R, van Meijgaarden KE, Latorre I, Muriel Moreno B, Garcia-Garcia E, Franken KL, Prat C, Stojanovic Z, De Souza Galvao ML, et al. Cell-mediated immune responses to in vivo-expressed and stage-specific Mycobacterium tuberculosis antigens in latent and active tuberculosis across different age groups. Front Immunol 2020;11:103. 
  29. Penn-Nicholson A, Tameris M, Smit E, Day TA, Musvosvi M, Jayashankar L, Vergara J, Mabwe S, Bilek N, Geldenhuys H, et al. Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 2018;6:287-298. https://doi.org/10.1016/S2213-2600(18)30077-8
  30. Shekhawat SD, Purohit HJ, Taori GM, Daginawala HF, Kashyap RS. Evaluation of heat shock proteins for discriminating between latent tuberculosis infection and active tuberculosis: a preliminary report. J Infect Public Health 2016;9:143-152. https://doi.org/10.1016/j.jiph.2015.07.003
  31. Wilkinson KA, Stewart GR, Newton SM, Vordermeier HM, Wain JR, Murphy HN, Horner K, Young DB, Wilkinson RJ. Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis: Acr2. J Immunol 2005;174:4237-4243. https://doi.org/10.4049/jimmunol.174.7.4237
  32. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 2003;100:12989-12994. https://doi.org/10.1073/pnas.2134250100
  33. Triccas JA, Gicquel B. Analysis of stress- and host cell-induced expression of the Mycobacterium tuberculosis inorganic pyrophosphatase. BMC Microbiol 2001;1:3.
  34. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 2011;7:e1002251.
  35. Stewart E, Triccas JA, Petrovsky N. Adjuvant strategies for more effective tuberculosis vaccine immunity. Microorganisms 2019;7:255.
  36. Patin EC, Orr SJ, Schaible UE. Macrophage inducible C-type lectin as a multifunctional player in immunity. Front Immunol 2017;8:861.
  37. Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N, Schleicher U, Christensen D, Wirtz S, Kirschning C, et al. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 2013;8:e53531.
  38. Martins KA, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines 2015;14:447-459. https://doi.org/10.1586/14760584.2015.966085
  39. Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, MacMicking JD, Chee JD, Wang S, Lu S, et al. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. J Biol Chem 2016;291:1123-1136. https://doi.org/10.1074/jbc.M115.683011
  40. Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ, Evans JT, Rengarajan J, Triccas JA. Advancing adjuvants for Mycobacterium tuberculosis therapeutics. Front Immunol 2021;12:740117.
  41. Wu Z, Liu K. Overview of vaccine adjuvants. Medicine in Drug Discovery 2021;11:100103.
  42. Uthayakumar D, Paris S, Chapat L, Freyburger L, Poulet H, De Luca K. Non-specific effects of vaccines illustrated through the BCG example: from observations to demonstrations. Front Immunol 2018;9:2869.
  43. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, Stensballe L, Diness BR, Lausch KR, Lund N, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis 2011;204:245-252. https://doi.org/10.1093/infdis/jir240
  44. Soysal A, Millington KA, Bakir M, Dosanjh D, Aslan Y, Deeks JJ, Efe S, Staveley I, Ewer K, Lalvani A. Effect of BCG vaccination on risk of Mycobacterium tuberculosis infection in children with household tuberculosis contact: a prospective community-based study. Lancet 2005;366:1443-1451. https://doi.org/10.1016/S0140-6736(05)67534-4
  45. Eisenhut M, Paranjothy S, Abubakar I, Bracebridge S, Lilley M, Mulla R, Lack K, Chalkley D, McEvoy M. BCG vaccination reduces risk of infection with Mycobacterium tuberculosis as detected by gamma interferon release assay. Vaccine 2009;27:6116-6120.  https://doi.org/10.1016/j.vaccine.2009.08.031
  46. Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S, Snell L, Mangtani P, Adetifa I, Lalvani A, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 2014;349:g4643.
  47. Luabeya AK, Kagina BM, Tameris MD, Geldenhuys H, Hoff ST, Shi Z, Kromann I, Hatherill M, Mahomed H, Hanekom WA, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine 2015;33:4130-4140. https://doi.org/10.1016/j.vaccine.2015.06.051
  48. Penn-Nicholson A, Geldenhuys H, Burny W, van der Most R, Day CL, Jongert E, Moris P, Hatherill M, Ofori-Anyinam O, Hanekom W, et al. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine 2015;33:4025-4034. https://doi.org/10.1016/j.vaccine.2015.05.088
  49. Pollock KM, Montamat-Sicotte DJ, Grass L, Cooke GS, Kapembwa MS, Kon OM, Sampson RD, Taylor GP, Lalvani A. PD-1 expression and cytokine secretion profiles of Mycobacterium tuberculosis-specific CD4+ T-cell subsets; potential correlates of containment in HIV-TB co-infection. PLoS One 2016;11:e0146905.
  50. Mittrucker HW, Steinhoff U, Kohler A, Krause M, Lazar D, Mex P, Miekley D, Kaufmann SH. Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc Natl Acad Sci U S A 2007;104:12434-12439. https://doi.org/10.1073/pnas.0703510104
  51. Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2010;2:53ra74.
  52. Corey L, Langenberg AG, Ashley R, Sekulovich RE, Izu AE, Douglas JM Jr, Handsfield HH, Warren T, Marr L, Tyring S, et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. JAMA 1999;282:331-340. https://doi.org/10.1001/jama.282.4.331
  53. Belshe RB, Leone PA, Bernstein DI, Wald A, Levin MJ, Stapleton JT, Gorfinkel I, Morrow RL, Ewell MG, Stokes-Riner A, et al. Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med 2012;366:34-43. https://doi.org/10.1056/NEJMoa1103151
  54. Tan X, Sande JL, Pufnock JS, Blattman JN, Greenberg PD. Retinoic acid as a vaccine adjuvant enhances CD8+ T cell response and mucosal protection from viral challenge. J Virol 2011;85:8316-8327. https://doi.org/10.1128/JVI.00781-11
  55. Marchioro SB, Maes D, Flahou B, Pasmans F, Del Pozo Sacristan R, Vranckx K, Melkebeek V, Cox E, Wuyts N, Haesebrouck F. Local and systemic immune responses in pigs intramuscularly injected with an inactivated Mycoplasma hyopneumoniae vaccine. Vaccine 2013;31:1305-1311. https://doi.org/10.1016/j.vaccine.2012.12.068
  56. Baldwin SL, Reese VA, Larsen SE, Pecor T, Brown BP, Granger B, Podell BK, Fox CB, Reed SG, Coler RN. Therapeutic efficacy against Mycobacterium tuberculosis using ID93 and liposomal adjuvant formulations. Front Microbiol 2022;13:935444.
  57. Woodworth JS, Christensen D, Cassidy JP, Agger EM, Mortensen R, Andersen P. Mucosal boosting of H56:CAF01 immunization promotes lung-localized T cells and an accelerated pulmonary response to Mycobacterium tuberculosis infection without enhancing vaccine protection. Mucosal Immunol 2019;12:816-826. https://doi.org/10.1038/s41385-019-0145-5