Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2005898) and the Civil-Military Technology Cooperation Program (14-CM-EB-09; NTIS 1695004819).
References
- Schirmer M, Garner A, Vlamakis H, Xavier RJ. 2019. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17: 497-511. https://doi.org/10.1038/s41579-019-0213-6
- Cucchiara S, Stronati L, Aloi M. 2012. Interactions between intestinal microbiota and innate immune system in pediatric inflammatory bowel disease. J. Clin. Gastroenterol. 46: S64-S66. https://doi.org/10.1097/MCG.0b013e31826a857f
- Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, et al. 2010. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59: 1192-1199. https://doi.org/10.1136/gut.2009.197822
- Shanahan F. 2001. Inflammatory bowel disease: immunodiagnostics, immunotherapeutics, and ecotherapeutics. Gastroenterology 120: 622-635. https://doi.org/10.1053/gast.2001.22122
- Levin A, Shibolet O. 2008. Toll-like receptors in inflammatory bowel disease-stepping into uncharted territory. World J. Gastroenterol. 14: 5149-5153. https://doi.org/10.3748/wjg.14.5149
- Neurath M, Fuss I, Strober W. 2000. TNBS-colitis. Int. Rev. Immunol. 19: 51-62. https://doi.org/10.3109/08830180009048389
- Wirtz S, Neurath MF. 2007. Mouse models of inflammatory bowel disease. Adv. Drug Deliv. Rev. 59: 1073-1083. https://doi.org/10.1016/j.addr.2007.07.003
- Perse M, Cerar A. 2012. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012: 718617.
- Wirtz S, Neufert C, Weigmann B, Neurath MF. 2007. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2: 541-546. https://doi.org/10.1038/nprot.2007.41
- Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. 1990. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98: 694-702. https://doi.org/10.1016/0016-5085(90)90290-H
- Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104: Unit-15.25.
- Alipour M, Lou Y, Zimmerman D, Bording-Jorgensen MW, Sergi C, Liu JJ, et al. 2013. A balanced IL-1beta activity is required for host response to Citrobacter rodentium infection. PLoS One 8: e80656.
- Luperchio SA, Schauer DB. 2001. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect. 3: 333-340. https://doi.org/10.1016/S1286-4579(01)01387-9
- Schauer DB, Zabel BA, Pedraza IF, O'Hara CM, Steigerwalt AG, Brenner DJ. 1995. Genetic and biochemical characterization of Citrobacter rodentium sp. J. Clin. Microbiol. 33: 2064-2068. https://doi.org/10.1128/jcm.33.8.2064-2068.1995
- Deng W, Li Y, Vallance BA, Finlay BB. 2001. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect. Immun. 69: 6323-6335. https://doi.org/10.1128/IAI.69.10.6323-6335.2001
- Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S. 2005. Citrobacter rodentium of mice and man. Cell Microbiol. 7: 1697-1706. https://doi.org/10.1111/j.1462-5822.2005.00625.x
- Song WS, Kim JH, Choi CM, Lee WJ, Yoon SI. 2019. TLR5 binding and activation by KMRC011, a flagellin-derived radiation countermeasure. Biochem. Biophys. Res. Commun. 508: 570-575. https://doi.org/10.1016/j.bbrc.2018.11.080
- Xavier RJ, Podolsky DK. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427-434. https://doi.org/10.1038/nature06005
- Kim JY, Park JH, Seo SM, Park JI, Jeon HY, Lee HK, et al. 2019. Radioprotective effect of newly synthesized toll-like receptor 5 agonist, KMRC011, in mice exposed to total-body irradiation. J. Radiat. Res. 60: 432-441. https://doi.org/10.1093/jrr/rrz024
- Xu Y, Dong H, Ge C, Gao Y, Liu H, Li W, et al. 2016. CBLB502 administration protects gut mucosal tissue in ulcerative colitis by inhibiting inflammation. Ann. Transl. Med. 4: 301.
- Park JI, Seo SM, Park JH, Jeon HY, Kim JY, Ryu SH, et al. 2018. A murine colitis model developed using a combination of dextran sulfate sodium and Citrobacter rodentium. J. Microbiol. 56: 272-279. https://doi.org/10.1007/s12275-018-7504-x
- Singh K, Chaturvedi R, Barry DP, Coburn LA, Asim M, Lewis ND, et al. 2001. The apolipoprotein E-mimetic peptide COG112 inhibits NF-kappaB signaling, proinflammatory cytokine expression, and disease activity in murine models of colitis. J. Biol. Chem. 286: 3839-3850. https://doi.org/10.1074/jbc.M110.176719
- Kitajima S, Takuma S, Morimoto M. 2000. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 49: 9-15. https://doi.org/10.1538/expanim.49.9
- Hibi T, Ohara M, Watanabe M, Kanai T, Takaishi H, Hayashi A, et al. 1993. Interleukin 2 and interferon-gamma augment anticolon antibody dependent cellular cytotoxicity in ulcerative colitis. Gut 34: 788-793. https://doi.org/10.1136/gut.34.6.788
- Raab Y, Gerdin B, Ahlstedt S, Hallgren R. 1993. Neutrophil mucosal involvement is accompanied by enhanced local production of interleukin-8 in ulcerative-colitis. Gut 34: 1203-1206. https://doi.org/10.1136/gut.34.9.1203
- Yu D, Zhu H, Liu Y, Cao J, Zhang X. 2009. Regulation of proinflammatory cytokine expression in primary mouse astrocytes by coronavirus infection. J. Virol. 83: 12204-12214. https://doi.org/10.1128/JVI.01103-09
- Moore KW, Malefyt RD, Coffman RL, O'Garra A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19: 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
- Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. 2005. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129: 550-564. https://doi.org/10.1016/j.gastro.2005.05.002
- Zhang H, Chen W. 2017. Interleukin 6 inhibition by triptolide prevents inflammation in a mouse model of ulcerative colitis. Exp. Ther. Med. 14: 2271-2276. https://doi.org/10.3892/etm.2017.4778
- Reinisch W, Gasche C, Tillinger W, Wyatt J, Lichtenberger C, Willheim CM et al. 1999. Clinical relevance of serum interleukin-6 in Crohn's disease: single point measurements, therapy monitoring, and prediction of clinical relapse. Am. J. Gastroenterol. 94: 2156-2164. https://doi.org/10.1111/j.1572-0241.1999.01288.x
- Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813: 878-88. https://doi.org/10.1016/j.bbamcr.2011.01.034
- Schreiber S, Nikolaus S, Hampe J. 1998. Activation of nuclear factor kappa B in inflammatory bowel disease. Gut 42: 477-484. https://doi.org/10.1136/gut.42.4.477
- Andresen L, Jorgensen VL, Perner A, Hansen A, Eugen-Olsen J, Rask-Madsen J. 2005. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54: 503-509. https://doi.org/10.1136/gut.2003.034165
- Assas BM, Levison SE, Little M, England H, Battrick L, Bagnall J, et al. 2017. Anti-inflammatory effects of infliximab in mice are independent of tumour necrosis factor α neutralization. Clin. Exp. Immunol. 187: 225-233. https://doi.org/10.1111/cei.12872
- Guidi L, Costanzo M, Ciarniello M, De Vitis I, Pioli C, Gatta L, et al. 2005. Increased levels of NF-κB inhibitors (IκBα and IκBγ) in the intestinal mucosa of crohn's disease patients during infliximab treatment. Int. J. Immunopathol. Pharmacol. 18: 155-164. https://doi.org/10.1177/039463200501800116
- Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, et al. 2013. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-kappaB signalling. Br. J. Nutr. 110: 599-608. https://doi.org/10.1017/S0007114512005594