DOI QR코드

DOI QR Code

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo (Department of Food Science and Technology, Chungnam National University) ;
  • Hoe-Suk Lee (Department of Biochemical Engineering Gangneung-Wonju National University) ;
  • Yunhee Jeong (Department of Food Science and Technology, Chungnam National University) ;
  • Tae Hee Kim (Department of Food Science and Technology, Chungnam National University) ;
  • Seungmi Kim (Department of Food Science and Technology, Chungnam National University) ;
  • Bong Hyun Sung (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • See-Hyoung Park (Department of Biological and Chemical Engineering, Hongik University) ;
  • Kyungmoon Park (Department of Biological and Chemical Engineering, Hongik University) ;
  • Hyun Gil Cha (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Young Joo Yeon (Department of Biochemical Engineering Gangneung-Wonju National University) ;
  • Hee Taek Kim (Department of Food Science and Technology, Chungnam National University)
  • Received : 2022.09.01
  • Accepted : 2022.10.04
  • Published : 2023.01.28

Abstract

Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

Keywords

Acknowledgement

This work was supported by a research fund from Chungnam National University (2022-0559-01).

References

  1. Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K. 2019. Biodegradation of waste PET. EMBO Rep. 20: e49365.
  2. Dissanayake L, Jayakody LN. 2021. Engineering microbes to bio-upcycle polyethylene terephthalate. Front. Bioeng. Biotechnol. 9: 656465.
  3. Kim DH, Han DO, In Shim K, Kim JK, Pelton JG, Ryu MH, et al. 2021. One-Pot Chemo-bioprocess of PET depolymerization and recycling enabled by a biocompatible catalyst, betaine. ACS Catal. 11: 3996-4008. https://doi.org/10.1021/acscatal.0c04014
  4. Shi L, Liu H, Gao S, Weng Y, Zhu L. 2021. Enhanced extracellular production of IsPETase in Escherichia coli via engineering of the pelB signal peptide. J. Agric. Food Chem. 69: 2245-2252. https://doi.org/10.1021/acs.jafc.0c07469
  5. Knott BC, Erickson E, Allen MD, Gado JE, Graham R, Kearns FL, et al. 2021. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. USA 117: 25476-25485. https://doi.org/10.1073/pnas.2006753117
  6. Geyer R, Jambeck JR, Law KL. 2017. Production, use, and the fate of all plastics ever made. Sci. Adv. 3: e1700782.
  7. Hou Q, Zhen M, Qian H, Nie Y, Bai X, Xia T, et al. 2021. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2: 100514.
  8. Kim HT, Hee Ryu M, Jung YJ, Lim S, Song HM, Park J, et al. 2021. Chemo-biological upcycling of poly(ethylene terephthalate) to multifunctional coating materials. ChemSusChem 14: 4251-4259. https://doi.org/10.1002/cssc.202100909
  9. Son HF, Cho IJ, Joo S, Seo H, Sagong HY, Choi SY, et al. 2019. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9: 3519-3526. https://doi.org/10.1021/acscatal.9b00568
  10. Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH. 2020. The United States' contribution of plastic waste to land and ocean. Sci. Adv. 6: eabd0288.
  11. Heidari M, Garnaik PP, Dutta A. 2019. The valorization of plastic via thermal means: industrial scale combustion methods. Plastics Energy 2019: 295-312. https://doi.org/10.1016/B978-0-12-813140-4.00011-X
  12. Kumar S, Singh E, Mishra R, Kumar A, Caucci S. 2021. Utilization of plastic wastes for sustainable environmental management: a review. ChemSusChem. 14: 3985-4006. https://doi.org/10.1002/cssc.202101631
  13. Kim HT, Kim JK, Cha HG, Kang MJ, Lee HS, Khang TU, et al. 2019. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7: 19396-19406. https://doi.org/10.1021/acssuschemeng.9b03908
  14. Wei R, Zimmermann W. 2017. Biocatalysis is a green route for recycling recalcitrant plastic polyethylene terephthalate. Microb. Biotechnol. 10: 1302-1307. https://doi.org/10.1111/1751-7915.12714
  15. Pantelic B, Ponjavic M, Jankovic V, Aleksic I, Stevanovic S, Murray J, et al. 2021. Upcycling biodegradable PVA/starch film to a bacterial biopigment and biopolymer. Polymers 13: 3692.
  16. Sung K, Cooper T, Kettley S. 2015. A review on upcycling: the current body of literature, knowledge gaps and a way forward - IRep - Nottingham Trent University. 17th International Conference on Environmental, Cultural, Economic and Social Sustainability 17: 28-40.
  17. Dyer AC, Nahil MA, Williams PT. 2021. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil. J. Energy Inst. 97: 27-36. https://doi.org/10.1016/j.joei.2021.03.022
  18. Klaimy S, Lamonier JF, Casetta M, Heymans S, Duquesne S. 2021. Recycling of plastic waste using flash pyrolysis - effect of mixture composition. Polym. Degrad. Stab. 187: 109540.
  19. Orozco S, Alvarez J, Lopez G, Artetxe M, Bilbao J, Olazar M. 2021. Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions. Energy Convers. Manag. 229: 113768.
  20. Osman AI, Farrell C, Al-Muhtaseb AH, Al-Fatesh AS, Harrison J, Rooney DW. 2020. Pyrolysis kinetic modeling of abundant plastic waste (PET) and in-situ emission monitoring. Environ. Sci. Eur. 32: 112.
  21. Suresh A, Alagusundaram A, Kumar PS, Vo DVN, Christopher FC, Balaji B, et al. 2021. Microwave pyrolysis of coal, biomass and plastic waste: a review. Environ. Chem. Lett. 19: 3609-3629. https://doi.org/10.1007/s10311-021-01245-4
  22. Liu Y, Fu W, Liu T, Zhang Y, Li B. 2022b. Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery. J. Anal. Appl. Pyrolysis 161: 105414.
  23. Suriapparao DV, Kumar DA, Vinu R. 2022. Microwave co-pyrolysis of PET bottle waste and rice husk: effect of plastic waste loading on product formation. Sustain. Energy Technol. Assess. 49: 101781.
  24. Straka P, Bicakova O, Supova M. 2022. Slow pyrolysis of waste polyethylene terephthalate yielding paraldehyde, ethylene glycol, benzoic acid, and clean fuel. Polym. Degrad. Stab. 198: 109900.
  25. Shahi A, Roozbehani B, Mirdrikvand M. 2022. Catalytic pyrolysis of waste polyethylene terephthalate granules using a Lewis-Bronsted acid sites catalyst. Clean Technol. Environ. Policy 24: 779-787. https://doi.org/10.1007/s10098-021-02260-3
  26. Vijayakumar A, Sebastian J. 2018. Pyrolysis process to produce fuel from different types of plastic - A review. IOP Conf. Ser.: Mater. Sci. Eng. 396: 012062.
  27. Lee J, Lee T, Tsang YF, Oh JI, Kwon EE. 2017. Enhanced energy recovery from polyethylene terephthalate via pyrolysis in CO2 atmosphere while suppressing acidic chemical species. Energy Convers. Manag. 148: 456-460. https://doi.org/10.1016/j.enconman.2017.06.026
  28. Li S, Canete Vela I, Jarvinen M, Seemann M. 2021. Polyethylene terephthalate (PET) recycling via steam gasification - The effect of operating conditions on gas and tar composition. Waste Manage. 130: 117-126. https://doi.org/10.1016/j.wasman.2021.05.023
  29. Choi MJ, Jeong YS, Kim JS. 2021. Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO. Energy 223: 120122.
  30. Jeong Y-S, Kim J-W, Ra HW, Seo MW, Mun T-Y, Kim J-S. 2021. Two-stage air gasification of ten different types of plastic using active carbon as a tar removal additive. SSRN Electronic J. pp. 1-38.
  31. Biermann L, Brepohl E, Eichert C, Paschetag M, Watts M, Scholl S. 2021. Development of a continuous PET depolymerization process as a basis for a back-to-monomer recycling method. Green Process Synth. 10: 361-373. https://doi.org/10.1515/gps-2021-0036
  32. Gupta P, Bhandari S. 2019. Chemical depolymerization of PET bottles via ammonolysis and aminolysis. pp. 109-134. Recycling Polyethylene Terephthalate Bottles.
  33. Chan K, Zinchenko A. 2021. Conversion of waste bottles' PET to a hydrogel adsorbent via PET aminolysis. J. Environ. Chem. Eng. 9: 106129.
  34. Backstrom E, Odelius K, Hakkarainen M. 2021. Ultrafast microwave-assisted recycling of PET to a family of functional precursors and materials. Eur. Polym. J. 151: 110441.
  35. Otaibi A, Alsukaibi A, Rahman M, Mushtaque M, Haque A. 2022. From waste to schiff Base: Upcycling of aminolysed poly(ethylene terephthalate) product. Polymers 14: 1861.
  36. Spychaj T. 2002. Chemical recycling of PET: methods and products. pp. 1252-1290. Handbook of thermoplastic polyesters: homopolymers, copolymers, blends, and composites.
  37. Laldinpuii ZT, Khiangte V, Lalhmangaihzuala S, Lalmuanpuia C, Pachuau Z, Lalhriatpuia C, et al. 2022. Methanolysis of PET waste using a heterogeneous catalyst of bio-waste origin. J. Polym. Environ. 30: 1600-1614. https://doi.org/10.1007/s10924-021-02305-0
  38. Tang S, Li F, Liu J, Guo B, Tian Z, Lv J. 2022a. Calcined sodium silicate as a solid base catalyst for the alcoholysis of poly(ethylene terephthalate). J. Chem. Technol. Biotechnol. 97: 1305-1314. https://doi.org/10.1002/jctb.7025
  39. Jiang Z, Yan D, Xin J, Li F, Guo M, Zhou Q, et al. 2022. Poly(ionic liquid)s an efficient and recyclable catalysts for methanolysis of PET. Polym. Degrad. Stab. 199: 109905.
  40. Tang S, Li F, Liu J, Guo B, Tian Z, Lv J. 2022b. MgO/NaY as modified mesoporous catalyst for methanolysis of polyethylene terephthalate wastes. J. Environ. Chem. Eng. 10: 107927.
  41. Pham DD, Cho J. 2021. Low-energy catalytic methanolysis of poly(ethyleneterephthalate). Green Chem. 23: 511
  42. Guo B, Liu J, Tang S, Liu Y, Tian Z, Lv J. 2022. Hydrolysis of dimethyl terephthalate to terephthalic acid on Nb-modified HZSM-5 zeolite catalysts. J. Chem. Technol. Biotechnol. 97: 1695-1704. https://doi.org/10.1002/jctb.7035
  43. Goje AS, Thakur SA, Chauhan YP, Patil TM, Patil SA, Diware VR, et al. 2005. Glycolytic aminolysis of poly(ethylene terephthalate) waste at atmospheric pressure for recovery of a value-added insecticide. Polym. Plast Technol. Eng. 44: 163-181. https://doi.org/10.1081/PTE-200046109
  44. Thachnatharen N, Shahabuddin S, Sridewi N. 2021. The Waste management of polyethylene terephthalate (PET) plastic waste: A Review. IOP Conference Series: Mater. Sci. Eng. 1127: 012002.
  45. Kim Y, Kim M, Hwang J, Im E, Moon GD. 2022. Optimizing PET glycolysis with an oyster shell-derived catalyst using response surface methodology. Polymers 14: 656.
  46. Wang Z, Jin Y, Wang Y, Tang Z, Wang S, Xiao G, et al. 2022. Cyanamide as a highly efficient organocatalyst for the glycolysis recycling of PET. ACS Sustainable Chem. Eng. 10: 7965-7973. https://doi.org/10.1021/acssuschemeng.2c01235
  47. Neves Ricarte G, Lopes Dias M, Sirelli L, Antunes Pereira Langone M, Machado de Castro A, Zarur Coelho MA, et al. 2021. Chemoenzymatic depolymerization of industrial and assorted post-consumer poly(ethylene terephthalate) (PET) wastes using a eutectic-based catalyst. J. Chem. Technol. Biotechnol. 96: 3237-3244. https://doi.org/10.1002/jctb.6882
  48. Wang R, Wang T, Yu G, Chen X. 2021. A new class of catalysts for the glycolysis of PET: Deep eutectic solvent@ZIF-8 composite. Polym. Degrad. Stab. 183: 109463.
  49. Mendiburu-Valor E, Mondragon G, Gonzalez N, Kortaberria G, Eceiza A, Pena-Rodriguez C. 2021. Improving the efficiency for the production of bis-(2-hydroxyethyl) terephthalate (BHET) from the glycolysis reaction of poly(ethylene terephthalate) (PET) in a pressure reactor. Polymers 13: 1461.
  50. Azeem M, Fournet MB, Attallah OA. 2022. Ultrafast 99% polyethylene terephthalate depolymerization into value-added monomers using sequential glycolysis-hydrolysis under microwave irradiation. Arab. J. Chem. 15: 103903.
  51. Trejo-carbajal N, Ambriz-luna KI, Herrera-gonz AM. 2022. Efficient method and mechanism of depolymerization of PET under conventional heating and microwave radiation using t-BuNH2/Lewis's acids. Eur. Polym. J. 175: 111388.
  52. Park SH, Kim SH. 2014. Poly(ethylene terephthalate) recycling for high-value added textiles. Fash. Text 1: 1-17. https://doi.org/10.1186/s40691-014-0001-x
  53. Yang Y, Lu Y, Xiang H, Xu Y, Li Y. 2002. Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling. Polym. Degrad. Stab. 75: 185-191. https://doi.org/10.1016/S0141-3910(01)00217-8
  54. Kawai F, Kawabata T, Oda M. 2019. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103: 4253-4268. https://doi.org/10.1007/s00253-019-09717-y
  55. Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. 2018. Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by Its native signal peptide. J. Agric. Food Chem. 66: 13217-13227. https://doi.org/10.1021/acs.jafc.8b05038
  56. Roberts C, Edwards S, Vague M, Leon-Zayas R, Scheffer H, Chan G, et al. 2020. Environmental consortium containing Pseudomonas and Bacillus species synergistically degrade polyethylene terephthalate plastic. MSphere 5: e01151-20.
  57. Alisch-Mark M, Herrmann A, Zimmermann W. 2006. Increase of the hydrophilicity of polyethylene terephthalate fibers by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi. Biotechnol. Lett. 28: 681-685. https://doi.org/10.1007/s10529-006-9041-7
  58. Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG. 2005. Enzymatic surface modification of poly(ethylene terephthalate). J. Biotechnol. 120: 376-386. https://doi.org/10.1016/j.jbiotec.2005.06.015
  59. Kawai F, Thumarat U, Kitadokoro K, Waku T, Tada T, Tanaka N, et al. 2013. Comparison of polyester-degrading cutinases from genus thermobifida. ACS Symp. Series 1144: 111-120.
  60. Ribitsch D, Hromic A, Zitzenbacher S, Zartl B, Gamerith C, Pellis A, et al. 2017. Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnol. Bioeng. 114: 2481-2488. https://doi.org/10.1002/bit.26372
  61. Kawai F, Kawase T, Shiono T, Urakawa H, Sukigara S, Tu C, et al. 2017. Enzymatic hydrophilization of polyester fabrics using a recombinant cutinase Cut 190 and their surface characterization. J. Fiber Sci. Technol. 73: 8-18. https://doi.org/10.2115/fiberst.fiberst.2017-0002
  62. Ronkvist AM, Xie W, Lu W, Gross RA. 2009. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42: 5128-5138. https://doi.org/10.1021/ma9005318
  63. Muller RJ, Schrader H, Profe J, Dresler K, Deckwer WD. 2005. Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Wiley Online Library 26: 1400-1405. https://doi.org/10.1002/marc.200500410
  64. Chen S, Su L, Chen J, Wu J. 2013. Cutinase: Characteristics, preparation, and application. Biotechn. Adv. 31: 1754-1767. https://doi.org/10.1016/j.biotechadv.2013.09.005
  65. Jerves C, Neves RPP, Ramos MJ, Da Silva S, Fernandes PA. 2021. Reaction mechanism of the PET degrading enzyme PETase studied with DFT/MM molecular dynamics simulations. ACS Catal. 11: 11626-11638. https://doi.org/10.1021/acscatal.1c03700
  66. Han X, Liu W, Huang JW, Ma J, Zheng Y, Ko TP, et al. 2017. Structural insight into the catalytic mechanism of PET hydrolase. Nat. Commun. 8: 2106.
  67. Sadler JC, Wallace S. 2021. Microbial synthesis of vanillin from waste poly(ethylene terephthalate). Green Chem. 23: 4665-4672. https://doi.org/10.1039/D1GC00931A
  68. Then J, Wei R, Oeser T, Gerdts A, Schmidt J, Barth M, et al. 2016. A disulfide bridge in the calcium-binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio 6: 425-432. https://doi.org/10.1002/2211-5463.12053
  69. Franden MA, Jayakody LN, Li WJ, Wagner NJ, Cleveland NS, Michener WE, et al. 2018. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. Metab. Eng. 48: 197-207. https://doi.org/10.1016/j.ymben.2018.06.003
  70. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, et al. 2018. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 115: E4350-E4357. https://doi.org/10.1073/pnas.1718804115
  71. Furukawa M, Kawakami N, Tomizawa A, Miyamoto K. 2019. Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep. 9: 16038.
  72. Li Q, Zheng Y, Su T, Wang Q, Liang Q, Zhang Z, et al. 2022. Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Comput. Struct. Biotechnol. J. 20: 459-470. https://doi.org/10.1016/j.csbj.2021.12.042
  73. Tiso T, Narancic T, Wei R, Pollet E, Beagan N, Schroder K, et al. 2021. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng. 66: 167-178. https://doi.org/10.1016/j.ymben.2021.03.011
  74. Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, Keely CM, et al. 2008. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (Polyhydroxyalkanoate). Environ. Sci. Technol. 42: 7696-7701. https://doi.org/10.1021/es801010e
  75. Liu P, Zhang T, Zheng Y, Li Q, Su T, Qi Q. 2021. Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms. Eng. Microbiol. 1: 100003.
  76. Kaabel S, Daniel Therien JP, Deschenes CE, Duncan D, Friscic T, Auclair K. 2021. Enzymatic depolymerization of highly crystalline polyethylene terephthalate enabled in moist-solid reaction mixtures. Proc. Natl. Acad. Sci. USA 118: e2026452118.
  77. Puspitasari N, Tsai SL, Lee CK. 2021. Fungal hydrophobin RolA enhanced PETase hydrolysis of polyethylene terephthalate. Appl. Biochem. Biotechnol. 193: 1284-1295. https://doi.org/10.1007/s12010-020-03358-y
  78. Son HF, Cho IJ, Joo S, Seo H, Sagong HY, Choi SY, et al. 2019. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9: 3519-3526. https://doi.org/10.1021/acscatal.9b00568
  79. Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580: 216-219. https://doi.org/10.1038/s41586-020-2149-4
  80. Qi X, Ma Y, Chang H, Li B, Ding M, Yuan Y. 2021. Evaluation of PET degradation using artificial microbial consortia. Front. Microbiol. 12: 778828.
  81. Kumar V, Maitra SS, Singh R, Burnwal DK. 2020. Acclimatization of a newly isolated bacteria in monomer terephthalic acid (TPA) may enable it to attack the polymer polyethylene terephthalate (PET). J. Environ. Chem. Eng. 8: 103977.
  82. Mahmood N, Yuan Z, Schmidt J, Xu CC. 2016. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew. Sustain. Energy 60: 317-329. https://doi.org/10.1016/j.rser.2016.01.037
  83. Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, Haugen SJ, et al. 2021. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab. Eng. 67: 250-261. https://doi.org/10.1016/j.ymben.2021.07.005
  84. Gao R, Pan H, Kai L, Han K, Lian J. 2022. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World J. Microbiol. Biotechnol. 38: 89.
  85. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196-1199. https://doi.org/10.1126/science.aad6359
  86. Salvador M, Abdulmutalib U, Gonzalez J, Kim J, Smith AA, Faulon JL, et al. 2019. Microbial genes for a circular and sustainable bio-PET economy. Genes 10: 373.
  87. Kincannon WM, Zahn M, Clare R, Beech JL, Romberg A, Larson J, et al. 2022. Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. Proc. Natl. Acad. USA 119: e2121426119.
  88. Johnson CW, Salvachua D, Rorrer NA, Black BA, Vardon DR, St. John PC, et al. 2019. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule 3: 1523-1537. https://doi.org/10.1016/j.joule.2019.05.011
  89. Trifunovic D, Schuchmann K, Muller V. 2016. Ethylene glycol metabolism in the acetogen Acetobacterium woodii. J. Bacteriol. 198: 1058-1065. https://doi.org/10.1128/JB.00942-15
  90. Li WJ, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, et al. 2019. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida KT2440. Environ. Microbiol. 21: 3669-3682. https://doi.org/10.1111/1462-2920.14703
  91. Welsing G, Wolter B, Hintzen HMT, Tiso T, Blank LM. 2021. Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative. Methods Enzymol. 648: 391-421. https://doi.org/10.1016/bs.mie.2020.12.025
  92. Tang HZ, Jiang JD, Wu XL, Qi X, Yan W, Cao Z, et al. 2021. Current advances in the biodegradation and bioconversion of polyethylene terephthalate. Microorganisms 10: 39.
  93. Kang MJ, Kim HT, Lee MW, Kim KA, Khang TU, Song HM, et al. 2020. A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste. Green Chem. 22: 3461-3469. https://doi.org/10.1039/D0GC00007H
  94. Devi Salam M, Varma A, Prashar R, Choudhary D. 2021. Review on efficacy of microbial degradation of polyethylene terephthalate and bio-upcycling as a part of plastic waste management. Appl. Ecol. Environ. Sci. 9: 695-703. https://doi.org/10.12691/aees-9-7-8
  95. Rorrer NA, Nicholson S, Carpenter A, Biddy MJ, Grundl NJ, Beckham GT. 2019. Combining reclaimed PET with Bio-based monomers enables plastic upcycling. Joule 3: 1006-1027. https://doi.org/10.1016/j.joule.2019.01.018
  96. Huber GW, Iborra S, Corma A. 2006. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106: 4044-4098. https://doi.org/10.1021/cr068360d
  97. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T. 2016. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem. 18: 342-359. https://doi.org/10.1039/C5GC01771H
  98. Fujiwara R, Sanuki R, Ajiro H, Fukui T, Yoshida S. 2021. Direct fermentative conversion of poly(ethylene terephthalate) into poly(hydroxy alkanoates) by Ideonella sakaiensis. Sci. Rep. 11: 1-7.  https://doi.org/10.1038/s41598-020-79139-8