DOI QR코드

DOI QR Code

Pre-pregnancy Diet to Maternal and Child Health Outcome: A Scoping Review of Current Evidence

  • Fadila Wirawan (Department of Public Health Nutrition, Faculty of Public Health, Universitas Indonesia) ;
  • Desak Gede Arie Yudhantari (Child Health Division, Leuwiliang General District Hospital) ;
  • Aghnaa Gayatri (Department of Family and Community Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada)
  • Received : 2022.11.14
  • Accepted : 2023.02.20
  • Published : 2023.03.31

Abstract

Objectives: Pre-pregnancy diet has an important role in preparing for healthy generation. However, evidence on this issue has been scarce. A scoping review synthesising current evidence will support the demand to map 'what has been researched' on pre-pregnancy diet and maternal and child health. Methods: Systematic search was performed using PICOS (Population, Intervention, Comparison, Outcomes, and Study design) framework in electronic databases. Articles were screened for eligibility, summarized, and the quality was assessed using the National Institute of Health assessment tool. The review structure complies with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guide. Results: Forty-two articles were included after full-text screening. Twenty-five studies were in high-income countries (HICs), six in each upper-middle income, five in lower-middle income countries (LMICs), and one in low-income countries (LIC). Based on the regions: North America (n=16), Europe (n=5), South America (n=4), Australia (n=4), Asia (n=5), Middle East (n=2), and sub-Saharan Africa (n=1). The two-most observed diet-related exposures were dietary pattern (n=17) and dietary quality (n=12). The most assessed outcome was gestational diabetes mellitus (n=28) and fetal and newborn anthropometry (n=7). The average quality score±standard deviation was 70±18%. Conclusions: Research related to pre-pregnancy diet is still concentrated in HICs. The context of diet may vary; therefore, future research is encouraged in LMICs and LICs context, and Mediterranean, South-East Asia, Pacific, and African regions. Some maternal and child nutrition-related morbidity, such as anemia and micronutrient deficiencies, have not been discussed. Research on these aspects will benefit to fill in the gaps related to pre-pregnancy diet and maternal and child health.

Keywords

References

  1. Public Health England. Health matters: reproductive health and pregnancy planning; 2018 [cited 2022 Jul 23]. Available from: https://www.gov.uk/government/publications/health-matters-reproductive-health-and-pregnancy-planning/health-matters-reproductive-health-and-pregnancy-planning.
  2. World Health Organization. Sustainable healthy diets: guiding principles; 2019 [cited 2022 Jul 23]. Available from: https://www.who.int/publications/i/item/9789241516648.
  3. Stephenson J, Heslehurst N, Hall J, Schoenaker DA, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 2018;391(10132):1830-1841. https://doi.org/10.1016/S0140-6736(18)30311-8
  4. Li C, Zhu N, Zeng L, Dang S, Zhou J, Pei L, et al. Effect of maternal pre-pregnancy underweight and average gestational weight gain on physical growth and intellectual development of early school-aged children. Sci Rep 2018;8(1):12014.
  5. National Research Council (US) Committee on Diet and Health. Diet and health: implications for reducing chronic disease risk. Washington, D.C.: National Academies Press; 1989, p. 1-3.
  6. United Nations Children's Fund (UNICEF). Maternal nutrition: preventing malnutrition in pregnant and breastfeeding women [cited 2022 Jul 23]. Available from: https://www.unicef.org/nutrition/maternal.
  7. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res 2014;14:579.
  8. World Health Organization. Maternal health [cited 2022 Jul 30]. Available from: https://www.who.int/health-topics/maternal-health#tab=tab_1.
  9. National Heart, Lung, and Blood Institute. Study quality assessment tools; 2021 [cited 2022 Jul 30]. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.
  10. Valkama AJ, Meinila J, Koivusalo S, Lindstrom J, Rono K, StachLempinen B, et al. The effect of pre-pregnancy lifestyle counselling on food intakes and association between food intakes and gestational diabetes in high-risk women: results from a randomised controlled trial. J Hum Nutr Diet 2018;31(3):301-305. https://doi.org/10.1111/jhn.12547
  11. Asadi M, Shahzeidi M, Nadjarzadeh A, Hashemi Yusefabad H, Mansoori A. The relationship between pre-pregnancy dietary patterns adherence and risk of gestational diabetes mellitus in Iran: a case-control study. Nutr Diet 2019;76(5):597-603. https://doi.org/10.1111/1747-0080.12514
  12. Bao W, Bowers K, Tobias DK, Olsen SF, Chavarro J, Vaag A, et al. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: a prospective cohort study. Am J Clin Nutr 2014;99(6):1378-1384. https://doi.org/10.3945/ajcn.113.082966
  13. Olmedo-Requena R, Gomez-Fernandez J, Amezcua-Prieto C, Mozas-Moreno J, Khan KS, Jimenez-Moleon JJ. Pre-pregnancy adherence to the mediterranean diet and gestational diabetes mellitus: a case-control study. Nutrients 2019;11(5):1003.
  14. Tobias DK, Zhang C, Chavarro J, Bowers K, Rich-Edwards J, Rosner B, et al. Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus. Am J Clin Nutr 2012;96(2):289-295. https://doi.org/10.3945/ajcn.111.028266
  15. Yong HY, Mohd Shariff Z, Mohd Yusof BN, Rejali Z, Appannah G, Bindels J, et al. The association between dietary patterns before and in early pregnancy and the risk of gestational diabetes mellitus (GDM): data from the Malaysian SECOST cohort. PLoS One 2020;15(1):e0227246.
  16. Alves-Santos NH, Cocate PG, Benaim C, Farias DR, Emmett PM, Kac G. Prepregnancy dietary patterns and their association with perinatal outcomes: a prospective cohort study. J Acad Nutr Diet 2019;119(9):1439-1451. https://doi.org/10.1016/j.jand.2019.02.016
  17. Grieger JA, Grzeskowiak LE, Wood LG, Clifton VL. Asthma control in pregnancy is associated with pre-conception dietary patterns. Public Health Nutr 2016;19(2):332-338. https://doi.org/10.1017/S1368980015001226
  18. Vilela AA, Farias DR, Eshriqui I, Vaz Jdos S, Franco-Sena AB, Castro MB, et al. Prepregnancy healthy dietary pattern is inversely associated with depressive symptoms among pregnant Brazilian women. J Nutr 2014;144(10):1612-1618. https://doi.org/10.3945/jn.114.190488
  19. Benaim C, Freitas-Vilela AA, Pinto TJ, Lepsch J, Farias DR, Dos Santos Vaz J, et al. Early pregnancy body mass index modifies the association of pre-pregnancy dietary patterns with serum polyunsaturated fatty acid concentrations throughout pregnancy in Brazilian women. Matern Child Nutr 2018;14(1):e12480.
  20. Van Lippevelde W, Vik FN, Wills AK, Strommer ST, Barker ME, Skreden M, et al. The impact of diet during adolescence on the neonatal health of offspring: evidence on the importance of preconception diet. The HUNT study. J Dev Orig Health Dis 2021;12(5):798-810. https://doi.org/10.1017/S2040174420001087
  21. Teixeira JA, Hoffman DJ, Castro TG, Saldiva SR, Francisco RP, Vieira SE, et al. Pre-pregnancy dietary pattern is associated with newborn size: results from ProcriAr study. Br J Nutr 2021;126(6):903-912. https://doi.org/10.1017/S0007114520004778
  22. Gaskins AJ, Rich-Edwards JW, Hauser R, Williams PL, Gillman MW, Penzias A, et al. Prepregnancy dietary patterns and risk of pregnancy loss. Am J Clin Nutr 2014;100(4):1166-1172. https://doi.org/10.3945/ajcn.114.083634
  23. Hillesund ER, Bere E, Sagedal LR, Vistad I, Seiler HL, Torstveit MK, et al. Pre-pregnancy and early pregnancy dietary behavior in relation to maternal and newborn health in the Norwegian Fit for Delivery study - a post hoc observational analysis. Food Nutr Res 2018. doi: https://doi.org/10.29219/fnr.v62.1273.
  24. Jarman M, Mathe N, Ramazani F, Pakseresht M, Robson PJ, Johnson ST, et al. Dietary patterns prior to pregnancy and associations with pregnancy complications. Nutrients 2018;10(7):914.
  25. Gicevic S, Gaskins AJ, Fung TT, Rosner B, Tobias DK, Isanaka S, et al. Evaluating pre-pregnancy dietary diversity vs. dietary quality scores as predictors of gestational diabetes and hypertensive disorders of pregnancy. PLoS One 2018;13(4):e0195103.
  26. Yee LM, Silver RM, Haas DM, Parry S, Mercer BM, Iams J, et al. Quality of periconceptional dietary intake and maternal and neonatal outcomes. Am J Obstet Gynecol 2020;223(1):121.e1-121.e8. https://doi.org/10.1016/j.ajog.2020.01.042
  27. Siega-Riz AM, Vladutiu CJ, Butera NM, Daviglus M, Gellman M, Isasi CR, et al. Preconception diet quality is associated with birth weight for gestational age among women in the Hispanic community health study/study of Latinos. J Acad Nutr Diet 2021;121(3):458-466. https://doi.org/10.1016/j.jand.2020.09.039
  28. Dhana K, Zong G, Yuan C, Schernhammer E, Zhang C, Wang X, et al. Lifestyle of women before pregnancy and the risk of offspring obesity during childhood through early adulthood. Int J Obes (Lond) 2018;42(7):1275-1284. https://doi.org/10.1038/s41366-018-0052-y
  29. Gete DG, Waller M, Mishra GD. Pre-pregnancy diet quality is associated with lowering the risk of offspring obesity and underweight: finding from a prospective cohort study. Nutrients 2021;13(4):1044.
  30. Gete DG, Waller M, Mishra GD. Pre-pregnancy diet quality and its association with offspring behavioral problems. Eur J Nutr 2021;60(1):503-515. https://doi.org/10.1007/s00394-020-02264-7
  31. Bao W, Tobias DK, Olsen SF, Zhang C. Pre-pregnancy fried food consumption and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetologia 2014;57(12):2485-2491. https://doi.org/10.1007/s00125-014-3382-x
  32. Grieger JA, Pelecanos AM, Hurst C, Tai A, Clifton VL. Pre-conception maternal food intake and the association with childhood allergies. Nutrients 2019;11(8):1851.
  33. Bowers K, Tobias DK, Yeung E, Hu FB, Zhang C. A prospective study of prepregnancy dietary fat intake and risk of gestational diabetes. Am J Clin Nutr 2012;95(2):446-453. https://doi.org/10.3945/ajcn.111.026294
  34. Lamyian M, Hosseinpour-Niazi S, Mirmiran P, Moghaddam Banaem L, Goshtasebi A, Azizi F. Pre-pregnancy fast food consumption is associated with gestational diabetes mellitus among Tehranian women. Nutrients 2017;9(3):216.
  35. Bao W, Bowers K, Tobias DK, Hu FB, Zhang C. Prepregnancy dietary protein intake, major dietary protein sources, and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 2013;36(7):2001-2008. https://doi.org/10.2337/dc12-2018
  36. Mari-Sanchis A, Diaz-Jurado G, Basterra-Gortari FJ, de la Fuente-Arrillaga C, Martinez-Gonzalez MA, Bes-Rastrollo M. Association between pre-pregnancy consumption of meat, iron intake, and the risk of gestational diabetes: the SUN project. Eur J Nutr 2018;57(3):939-949. https://doi.org/10.1007/s00394-017-1377-3
  37. Chen L, Hu FB, Yeung E, Tobias DK, Willett WC, Zhang C. Pre-pregnancy consumption of fruits and fruit juices and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 2012;35(5):1079-1082. https://doi.org/10.2337/dc11-2105
  38. Bao W, Tobias DK, Hu FB, Chavarro JE, Zhang C. Pre-pregnancy potato consumption and risk of gestational diabetes mellitus: prospective cohort study. BMJ 2016;352:h6898.
  39. Chen X, Jiang X, Huang X, He H, Zheng J. Association between probiotic yogurt intake and gestational diabetes mellitus: a case-control study. Iran J Public Health 2019;48(7):1248-1256.
  40. Gaskins AJ, Rich-Edwards JW, Williams PL, Toth TL, Missmer SA, Chavarro JE. Pre-pregnancy caffeine and caffeinated beverage intake and risk of spontaneous abortion. Eur J Nutr 2018;57(1):107-117. https://doi.org/10.1007/s00394-016-1301-2
  41. Chen L, Hu FB, Yeung E, Willett W, Zhang C. Prospective study of pre-gravid sugar-sweetened beverage consumption and the risk of gestational diabetes mellitus. Diabetes Care 2009;32(12):2236-2241. https://doi.org/10.2337/dc09-0866
  42. Mohammed H, Marquis GS, Aboud F, Bougma K, Samuel A. Pre-pregnancy iodized salt improved children's cognitive development in randomized trial in Ethiopia. Matern Child Nutr 2020;16(3):e12943.
  43. Bao W, Song Y, Bertrand KA, Tobias DK, Olsen SF, Chavarro JE, et al. Prepregnancy habitual intake of vitamin D from diet and supplements in relation to risk of gestational diabetes mellitus: a prospective cohort study. J Diabetes 2018;10(5):373-379. https://doi.org/10.1111/1753-0407.12611
  44. Lawande A, Di Gravio C, Potdar RD, Sahariah SA, Gandhi M, Chopra H, et al. Effect of a micronutrient-rich snack taken preconceptionally and throughout pregnancy on ultrasound measures of fetal growth: the Mumbai Maternal Nutrition Project (MMNP). Matern Child Nutr 2018;14(1):e12441.
  45. Potdar RD, Sahariah SA, Gandhi M, Kehoe SH, Brown N, Sane H, et al. Improving women's diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight--a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). Am J Clin Nutr 2014;100(5):1257-1268. https://doi.org/10.3945/ajcn.114.084921
  46. Sahariah SA, Gandhi M, Chopra H, Kehoe SH, Johnson MJ, di Gravio C, et al. Body composition and cardiometabolic risk markers in children of women who took part in a randomized controlled trial of a preconceptional nutritional intervention in Mumbai, India. J Nutr 2022;152(4):1070-1081. https://doi.org/10.1093/jn/nxab443
  47. Cui Y, Liao M, Xu A, Chen G, Liu J, Yu X, et al. Association of maternal pre-pregnancy dietary intake with adverse maternal and neonatal outcomes: a systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2021. doi: https://doi.org/10.1080/10408398.2021.1989658.
  48. Tieu J, Shepherd E, Middleton P, Crowther CA. Dietary advice interventions in pregnancy for preventing gestational diabetes mellitus. Cochrane Database Syst Rev 2017;1(1):CD006674.
  49. Stephenson J, Heslehurst N, Hall J, Schoenaker DA, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 2018;391(10132):1830-1841. https://doi.org/10.1016/S0140-6736(18)30311-8
  50. Temel S, van Voorst SF, Jack BW, Denktas S, Steegers EA. Evidence-based preconceptional lifestyle interventions. Epidemiol Rev 2014;36:19-30: https://doi.org/10.1093/epirev/mxt003
  51. Hanson MA, Gluckman PD, Ma RC, Matzen P, Biesma RG. Early life opportunities for prevention of diabetes in low and middle income countries. BMC Public Health 2012;12:1025.
  52. Geller SE, Koch AR, Garland CE, MacDonald EJ, Storey F, Lawton B. A global view of severe maternal morbidity: moving beyond maternal mortality. Reprod Health 2018;15(Suppl 1):98.
  53. Balarajan Y, Ramakrishnan U, Ozaltin E, Shankar AH, Subramanian SV. Anaemia in low-income and middle-income countries. Lancet 2011;378(9809):2123-2135. https://doi.org/10.1016/S0140-6736(10)62304-5
  54. Ryan LM, Mahmood MA, Laurence CO. Incidence of concomitant illnesses in pregnancy in Indonesia: estimates from 1990-2019, with projections to 2030. Lancet Reg Health West Pac 2021;10:100139.
  55. Wirawan F, Nurrika D. Maternal pre-pregnancy anemia and childhood anemia in Indonesia: a risk assessment using a population-based prospective longitudinal study. Epidemiol Health 2022;44:e2022100.
  56. Ahmed T, Hossain M, Sanin KI. Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann Nutr Metab 2012;61 Suppl 1:8-17. https://doi.org/10.1159/000345165
  57. World Health Organization. Infant mortality [cited 2022 Sep 22]. Available from: https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/infant-mortality.
  58. Dhaded SM, Hambidge KM, Ali SA, Somannavar M, Saleem S, Pasha O, et al. Preconception nutrition intervention improved birth length and reduced stunting and wasting in newborns in South Asia: the Women First Randomized Controlled Trial. PLoS One 2020;15(1):e0218960.
  59. Young MF, Ramakrishnan U. Maternal undernutrition before and during pregnancy and offspring health and development. Ann Nutr Metab 2020;76(suppl 3):41-53. https://doi.org/10.1159/000510595
  60. Shukla AK, Srivastava S, Verma G. Effect of maternal anemia on the status of iron stores in infants: a cohort study. J Family Community Med 2019;26(2):118-122.
  61. Yang J, Cheng Y, Zeng L, Dang S, Yan H. Maternal dietary diversity during pregnancy and congenital heart defects: a case-control study. Eur J Clin Nutr 2021;75(2):355-363. https://doi.org/10.1038/s41430-020-0617-4
  62. Dean SV, Lassi ZS, Imam AM, Bhutta ZA. Preconception care: nutritional risks and interventions. Reprod Health 2014;11(Suppl 3):S3.
  63. Morgane PJ, Mokler DJ, Galler JR. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 2002;26(4):471-483. https://doi.org/10.1016/S0149-7634(02)00012-X
  64. Rizzo TA, Metzger BE, Dooley SL, Cho NH. Early malnutrition and child neurobehavioral development: insights from the study of children of diabetic mothers. Child Dev 1997;68(1):26-38. https://doi.org/10.2307/1131922
  65. Wilkins E, Wickramasinghe K, Pullar J, Demaio AR, Roberts N, Perez-Blanco KM, et al. Maternal nutrition and its intergenerational links to non-communicable disease metabolic risk factors: a systematic review and narrative synthesis. J Health Popul Nutr 2021;40(1):20.
  66. Greco EA, Lenzi A, Migliaccio S, Gessani S. Epigenetic modifications induced by nutrients in early life phases: gender differences in metabolic alteration in adulthood. Front Genet 2019;10:795.
  67. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics 2011;3(4):503-518. https://doi.org/10.2217/epi.11.71
  68. Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RP, Willaime-Morawek S. Epigenetics in the uterine environment: how maternal diet and ART may influence the epigenome in the offspring with long-term health consequences. Genes (Basel) 2021;13(1):31.
  69. Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, et al. Perinatal and early-life nutrition, epigenetics, and allergy. Nutrients 2021;13(3):724.
  70. World Health Organization. Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation: WHO technical report series 916; 2003 [cited 2022 Sep 22]. Available from: https://www.who.int/publications/i/item/924120916X.
  71. Keats EC, Rappaport AI, Shah S, Oh C, Jain R, Bhutta ZA. The dietary intake and practices of adolescent girls in low- and middle-income countries: a systematic review. Nutrients 2018;10(12):1978.
  72. Agustina R, Nadiya K, Andini EA, Setianingsih AA, Sadariskar AA, Prafiantini E, et al. Associations of meal patterning, dietary quality and diversity with anemia and overweight-obesity among Indonesian school-going adolescent girls in West Java. PLoS One 2020;15(4):e0231519.
  73. Dean S, Rudan I, Althabe F, Webb Girard A, Howson C, Langer A, et al. Setting research priorities for preconception care in low- and middle-income countries: aiming to reduce maternal and child mortality and morbidity. PLoS Med 2013;10(9):e1001508.