Acknowledgement
This work was supported by the National Natural Science Foundation of China (41976119 and 91751117) and the International Partnership Program of Chinese Academy of Sciences (Grant No. 075GJHZ2022014MI).
References
- Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240. https://doi.org/10.1126/science.281.5374.237
- Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305: 354-360. https://doi.org/10.1126/science.1095964
- Du Z-Y, Benning C. 2016. Triacylglycerol accumulation in photosynthetic cells in plants and algae, pp. 179-205. In Nakamura Y, LiBeisson Y (eds.), Lipids in Plant and Algae Development. Subcellular Biochemistry, Vol. 86. Springer, Cham.
- Yu E, Zendejas F, Lane P, Gaucher S, Simmons B, Lane T. 2009. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J. Appl. Phycol. 21: 669-681. https://doi.org/10.1007/s10811-008-9400-y
- Kong F, Romero IT, Warakanont J, Li-Beisson Y. 2018. Lipid catabolism in microalgae. New Phytol. 218: 1340-1348. https://doi.org/10.1111/nph.15047
- Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. pp 3-30. In Sandoval G (ed.), Lipases and Phospholipases. Methods in Molecular Biology, Vol. 861. Humana Press, New York, NY.
- Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. 2011. Recent insights into the structure and function of CGI-58. Curr. Opin. Lipidol. 22: 149-158. https://doi.org/10.1097/MOL.0b013e328346230e
- Yu L, Li Y, Grise A, Wang H. 2020. CGI-58: versatile regulator of intracellular lipid droplet homeostasis. Adv. Exp. Med. Biol. 1276: 197-222. https://doi.org/10.1007/978-981-15-6082-8_13
- Yamaguchi T, Omatsu N, Matsushita S, Osumi T. 2004. CGI-58 interacts with Perilipin and is localized to lipid droplets: possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J. Biol. Chem. 279: 30490-30497. https://doi.org/10.1074/jbc.M403920200
- Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, et al. 2004. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J. Biol. Chem. 279: 42062-42071. https://doi.org/10.1074/jbc.M407462200
- Radner FPW, Streith IE, Schoiswohl G, Schweiger M, Kumari M, Eichmann TO, et al. 2010. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI58). J. Biol. Chem. 285: 7300-7311. https://doi.org/10.1074/jbc.M109.081877
- James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, et al. 2010. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants. Proc. Nat. Acad. Sci. USA 107: 17833-17838. https://doi.org/10.1073/pnas.0911359107
- Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, et al. 2013. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell 25: 1726-1739. https://doi.org/10.1105/tpc.113.111898
- Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, et al. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Nat. Acad. Sci. USA 110: 19748-19753. https://doi.org/10.1073/pnas.1309299110
- Ghosh AK, Ramakrishnan G, Rajasekharan R. 2008. YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J. Biol. Chem. 283: 9768-9775. https://doi.org/10.1074/jbc.M708418200
- Montero-Moran G, Caviglia JM, McMahon D, Rothenberg A, Subramanian V, Xu Z, et al. 2010. CGI-58/ABHD5 is a coenzyme Adependent lysophosphatidic acid acyltransferase. J. Lipid Res. 51: 709-719. https://doi.org/10.1194/jlr.M001917
- Ghosh AK, Chauhan N, Rajakumari S, Daum G, Rajasekharan R. 2009. At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 151: 869-881. https://doi.org/10.1104/pp.109.144261
- McMahon D, Dinh A, Kurz D, Shah D, Han G-S, Carman GM, et al. 2014. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity. J. Lipid Res. 55: 1750-1761. https://doi.org/10.1194/jlr.M051151
- Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. pp. 29-60. In Smith WL, Canley MH (eds.), Culture of Marine Invertebrate Animals. Plenum Press, New York.
- Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ. 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11: 179-184. https://doi.org/10.1023/A:1008046023487
- Maheswari U, Jabbari K, Petit J-L, Porcel BM, Allen AE, Cadoret J-P, et al. 2010. Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biol. 11: R85.
- Guindon S, Lethiec F, Duroux P, Gascuel O. 2005. PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33: W557-W559. https://doi.org/10.1093/nar/gki352
- Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE. 2000. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J. Phycol. 36: 379-386. https://doi.org/10.1046/j.1529-8817.2000.99164.x
- Zhang C, Hu H. 2014. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar. Genomics 16: 63-66. https://doi.org/10.1016/j.margen.2013.10.003
- Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, et al. 2007. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406: 23-35. https://doi.org/10.1016/j.gene.2007.05.022
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Bligh EG, Dyer WJ. 1959. A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/y59-099
- Reiser S, Somerville C. 1997. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl-coenzyme a reductase. J. Bacteriol. 179: 2969-2975. https://doi.org/10.1128/jb.179.9.2969-2975.1997
- Xie Y, Wu B, Wu Z, Tu X, Xu S, Lv X, et al. 2020. Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem. 319: 126547
- Gruber A, Cornaciu I, Lass A, Schweiger M, Poeschl M, Eder C, et al. 2010. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J. Biol. Chem. 285: 12289-12298. https://doi.org/10.1074/jbc.M109.064469
- Schrag JD, Cygler M. 1997. Lipases and αβ hydrolase fold. Meth. Enzymol. 284: 85-107. https://doi.org/10.1016/S0076-6879(97)84006-2
- Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R. 2008. CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol. Chem. 283: 24525-24533. https://doi.org/10.1074/jbc.M801783200
- Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, et al. 2006. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J. Biol. Chem. 281: 491-500. https://doi.org/10.1074/jbc.M508414200
- Li X, Pan Y, Hu H. 2018. Identification of the triacylglycerol lipase in the chloroplast envelope of the diatom Phaeodactylum tricornutum. Algal Res. 33: 440-447. https://doi.org/10.1016/j.algal.2018.06.023
- Barka F, Angstenberger M, Ahrendt T, Lorenzen W, Bode HB, Buchel C. 2016. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861: 239-248. https://doi.org/10.1016/j.bbalip.2015.12.023
- Jallet D, Xing D, Hughes A, Moosburner M, Simmons MP, Allen AE, et al. 2020. Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom. New Phytol. 228: 946-958. https://doi.org/10.1111/nph.16744
- Hao X, Chen W, Amato A, Jouhet J, Marechal E, Moog D, et al. 2022. Multiplex CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. New Phytol. 233: 1797-1812. https://doi.org/10.1111/nph.17911
- Bates PD, Durrett TP, Ohlrogge JB, Pollard M. 2009. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 150: 55-72. https://doi.org/10.1104/pp.109.137737
- Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C. 2012. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol. 160: 1530-1539. https://doi.org/10.1104/pp.112.204438
- Khatib A, Arhab Y, Bentebibel A, Abousalham A, Noiriel A. 2016. Reassessing the potential activities of plant CGI-58 protein. PLoS One 11: e0145806
- Abida H, Dolch LJ, Meї C, Villanova V, Conte M, Block MA, et al. 2015. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167: 118-136. https://doi.org/10.1104/pp.114.252395
- Zhang J, Xu D, Nie J, Han R, Zhai Y, Shi Y. 2014. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase. J. Biol. Chem. 289: 33044-33053. https://doi.org/10.1074/jbc.M114.573857