DOI QR코드

DOI QR Code

Comparison of Gold Biosensor Combined with Light Microscope Imaging System with ELISA for Detecting Salmonella in Chicken after Exposure to Simulated Chilling Condition

  • Mi-Kyung Park (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2022.12.07
  • Accepted : 2023.01.03
  • Published : 2023.02.28

Abstract

In this study, the performance of a gold biosensor combined with light microscope imaging system (GB-LMIS) was comparatively evaluated against enzyme-linked immunosorbent assay (ELISA) for detecting Salmonella under simulated chilling condition. The optimum concentration of antiSalmonella polyclonal antibodies (pAbs) was determined to be 12.5 and 100 ㎍/ml for ELISA and GBLMIS, respectively. GB-LMIS exhibited a sufficient and competitive specificity toward three tested Salmonella among only. To mimic a real-world situation, chicken was inoculated with Salmonella cocktail and stored under chilling condition for 48 h. The overall growth of Salmonella under chilling condition was significantly lower than that under non-exposure to the chilling condition (p < 0.05). No significant differences in bacterial growth were observed between brain heart infusion and brilliant green broth during the enrichment period (p > 0.05). Finally, both GB-LMIS and ELISA were employed to detect Salmonella at every 2-h interval. GB-LMIS detected Salmonella with a competitive specificity by the direct observation of bacteria on the sensor using a charge-coupled device camera within a detection time of ~2.5 h. GB-LMIS is a feasible, novel, and rapid method for detecting Salmonella in poultry facilities.

Keywords

Acknowledgement

This work was supported by Dr. Tung-Shi Huang at Auburn University in USA.

References

  1. Wessels K, Rip D, Gouws P. 2021. Salmonella in chicken meat: consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods 10: 1742-1762. https://doi.org/10.3390/foods10081742
  2. Popa GL, Papa MI. 2021. Salmonella spp. infection-A continuous threat worldwide. Germs 11: 88-96. https://doi.org/10.18683/germs.2021.1244
  3. Panisello PJ, Rooney R, Quantick PC, Stanwell-Smith R. 2000. Application of foodborne disease outbreak data in the development and maintenance of HACCP systems. Int. J. Food Microbiol. 59: 221-234. https://doi.org/10.1016/S0168-1605(00)00376-7
  4. Whyte P, McGill K, Monahan C, Collins J. 2004. The effect of sampling time on the levels of micro-organisms recovered from broiler carcasses in a commercial slaughter plant. Food Microbiol. 21: 59-65. https://doi.org/10.1016/S0740-0020(03)00040-6
  5. Myint M, Johnson Y, Tablante N, Heckert R. 2006. The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiol. 23: 599-604. https://doi.org/10.1016/j.fm.2005.09.002
  6. Chai S, Cole D, Nisler A, Mahon BE. 2017. Poultry: the most common food in outbreaks with known pathogens, United States, 1998- 2012. Epidemiol. Infect. 145: 316-325. https://doi.org/10.1017/S0950268816002375
  7. Mouttotou N, Ahmad S, Kamran Z, Koutoulis KC. 2017. Prevalence, risks and antibiotic resistance of Salmonella in poultry production chain, pp. 215-234. In Mihai M (ed), Current topics in Salmonella and Salmonellosis. IntechOpen, London, U.K.
  8. Mayrhofer S, Paulsen P, Smulders FJ, Hilbert F. 2004. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int. J. Food Microbiol. 97: 23-29. https://doi.org/10.1016/j.ijfoodmicro.2004.04.006
  9. Jarquin R, Hanning I, Ahn S, Ricke SC. 2009. Development of rapid detection and genetic characterization of Salmonella in poultry breeder feeds. Sensors 9: 5308-5323. https://doi.org/10.3390/s90705308
  10. Swaminathan B, Feng P. 1994. Rapid detection of food-borne pathogenic bacteria. Annu. Rev. Microbiol. 48: 401-426. https://doi.org/10.1146/annurev.mi.48.100194.002153
  11. Byeon HM, Vodyanoy VJ, Oh J-H, Kwon J-H, Park M-K. 2015. Lytic phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 162: B230.
  12. Park M-K, Park JW, Oh J-H. 2012. Optimization and application of a dithiobis-succinimidyl propionate-modified immunosensor platform to detect Listeria monocytogenes in chicken skin. Sens. Actuators B Chem. 171: 323-331. https://doi.org/10.1016/j.snb.2012.04.017
  13. Chemburu S, Wilkins E, Abdel-Hamid I. 2005. Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens. Bioelectron. 21: 491-499. https://doi.org/10.1016/j.bios.2004.11.025
  14. Skottrup PD, Nicolaisen M, Justesen AF. 2008. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 24: 339-348. https://doi.org/10.1016/j.bios.2008.06.045
  15. Ricci F, Volpe G, Micheli L, Palleschi G. 2007. A review on novel developments and applications of immunosensors in food analysis. Anal. Chem. Acta 605: 111-129. https://doi.org/10.1016/j.aca.2007.10.046
  16. Lazcka O, Del Campo FJ, Munoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  17. Choi IY, Park JH, Gwak KM, Kim K-P, Oh J-H, Park M-K. 2018. Studies on lytic, tailed Bacillus cereus-specific phage for use in a ferromagnetoelastic biosensor as a novel recognition element. J. Microbiol. Biotechnol. 28: 87-94. https://doi.org/10.4014/jmb.1710.10033
  18. Vigneshvar S, Sudhakumari C, Senthilkumaran B, Prakash H. 2016. Recent advances in biosensor technology for potential applications-an overview. Front. Bioeng. Biotechnol. 4: 11-20. https://doi.org/10.3389/fbioe.2016.00011
  19. Mehrotra P. 2016. Biosensors and their applications-a review. J. Oral Biol. Craniofac. Res. 6: 153-159. https://doi.org/10.1016/j.jobcr.2015.12.002
  20. Su L, Jia W, Hou C, Lei Y. 2011. Microbial biosensors: a review. Biosens. Bioelectron. 26: 1788-1799. https://doi.org/10.1016/j.bios.2010.09.005
  21. Choi S, Chae J. 2010. Methods of reducing non-specific adsorption in microfluidic biosensors. J. Micromech. Microeng. 20: 075015.
  22. Nakanishi K, Sakiyama T, Kumada Y, Imamura K, Imanaka H. 2008. Recent advances in controlled immobilization of proteins onto the surface of the solid substrate and its possible application to proteomics. Curr. Proteom. 5: 161-175. https://doi.org/10.2174/157016408785909622
  23. Park M-K, Oh J-H. 2012. Rapid detection of E. coli O157:H7 on turnip greens using a modified gold biosensor combined with light microscopic imaging system. J. Food Sci. 77: M127-M134. https://doi.org/10.1111/j.1750-3841.2011.02537.x
  24. Van Poucke L. 1990. Salmonella-TEK, a rapid screening method for Salmonella species in food. Appl. Environ. Microbiol. 56: 924-927. https://doi.org/10.1128/aem.56.4.924-927.1990
  25. Sampers I, Jacxsens L, Luning PA, Marcelis WJ, Dumoulin A, Uyttendaele M. 2010. Performance of food safety management systems in poultry meat preparation processing plants in relation to Campylobacter spp. contamination. J. Food Prot. 73: 1447-1457. https://doi.org/10.4315/0362-028X-73.8.1447
  26. Sheu SJ, Hwang WZ, Chiang YC, Lin WH, Chen HC, Tsen HY. 2010. Use of Tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of Bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods. J. Food Sci. 75: M521-M527. https://doi.org/10.1111/j.1750-3841.2010.01816.x
  27. Parveen S, Taabodi M, Schwarz JG, Oscar TP, Harter-Dennis J, White DG. 2007. Prevalence and antimicrobial resistance of Salmonella recovered from processed poultry. J. Food Prot. 70: 2466-2472. https://doi.org/10.4315/0362-028X-70.11.2466
  28. Roy P, Dhillon A, Lauerman LH, Schaberg D, Bandli D, Johnson S. 2002. Results of Salmonella isolation from poultry products, poultry, poultry environment, and other characteristics. Avian Dis. 46: 17-24. https://doi.org/10.1637/0005-2086(2002)046[0017:ROSIFP]2.0.CO;2
  29. Epa U. 1992. Code of federal regulations. Title 40: 319.
  30. Park M-K. 2016. Determination of best enrichment media for growth of Salmonella injured from cold temperature during process and storage. Korean J. Food Preserv. 23: 759-764. https://doi.org/10.11002/kjfp.2016.23.6.759
  31. Huang H, Garcia MM, Brooks BW, Nielsen K, Ng S-P. 1999. Evaluation of culture enrichment procedures for use with Salmonella detection immunoassay. Int. J. Food Microbiol. 51: 85-94. https://doi.org/10.1016/S0168-1605(99)00102-6
  32. Ng S, Tsui C, Roberts D, Chau P, Ng M. 1996. Detection and serogroup differentiation of Salmonella spp. in food within 30 hours by enrichment-immunoassay with a T6 monoclonal antibody capture enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 62: 2294-2302. https://doi.org/10.1128/aem.62.7.2294-2302.1996
  33. Wyatt G, Langley M, Lee H, Morgan M. 1993. Further studies on the feasibility of one-day Salmonella detection by enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 59: 1383-1390.  https://doi.org/10.1128/aem.59.5.1383-1390.1993