Acknowledgement
This research was supported by a grant (No. 20161MFDS026) from the Ministry of Food and Drug Safety. The findings and conclusions of this article are our own and do not necessarily represent the views of the Ministry of Food and Drug Safety.
References
- Korean Statistical Information Service. Available from https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0028&vw. Accessed Jan. 16, 2022.
- Kim MJ, Moon Y, Tou JC, Mou B, Waterland NL. 2016. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 49: 19-34. https://doi.org/10.1016/j.jfca.2016.03.004
- Centers for Disease Control and Prevention. 2021. List of selected multistate foodborne outbreak investigations. Available from https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html. Accessed Aug. 3, 2022.
- Hoff C, Higa J, Patel K, Gee E, Wellman A, Vidanes J, et al. 2021. An outbreak of Escherichia coli O157:H7 infections linked to romaine lettuce exposure - United States, 2019. MMWR Recomm. Reps. 70: 689-690.
- Marshall KE, Hexemer A, Seelman SL, Fatica MK, Blessington T, Hajmeer M, et al. 2020. Lessons learned from a decade of investigations of shiga toxin-producing Escherichia coli outbreaks linked to leafy greens, United States and Canada. Emerg. Infect. Dis. 26: 2319-2328. https://doi.org/10.3201/eid2610.191418
- Kim YJ, Kim HS, Kim KY, Chon JW, Kim DH, Seo KH. 2016. High occurrence rate and contamination level of Bacillus cereus in organic vegetables on sale in retail markets. Foodborne Pathog. Dis. 13: 656-660. https://doi.org/10.1089/fpd.2016.2163
- Jackson KA, Stroika S, Katz LS, Beal J, Brandt E, Nadon C, et al. 2016. Use of whole genome sequencing and patient interviews to link a case of sporadic listeriosis to consumption of prepackaged lettuce. J. Food Prot. 79: 806-809. https://doi.org/10.4315/0362-028X.JFP-15-384
- Heaton JC, Jones K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J. Appl. Microbiol. 104: 613-626. https://doi.org/10.1111/j.1365-2672.2007.03587.x
- Hugenholtz P, Tyson GW. 2008. Metagenomics. Nature 455: 481-483. https://doi.org/10.1038/455481a
- Ryu JA, Kim E, Yang SM, Lee S, Yoon SR, Jang KS, et al. 2021. High-throughput sequencing of the microbial community associated with the physicochemical properties of meju (dried fermented soybean) and doenjang (traditional Korean fermented soybean paste). LWY 146: 111473.
- Ryu JA, Kim E, Kim MJ, Lee S, Yoon SR, Ryu JG, et al. 2021. Physicochemical characteristics and microbial communities in gochujang, a traditional Korean fermented hot pepper paste. Front. Microbiol. 11: 620478.
- Jackson CR, Randolph KC, Osborn SL, Tyler HL. 2013. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 13: 274.
- Asakura H, Tachibana M, Taguchi M, Hiroi T, Kurazono H, Makino SI, et al. 2016. Seasonal and growth-dependent dynamics of bacterial community in radish sprouts. J. Food Saf. 36: 392-401. https://doi.org/10.1111/jfs.12256
- Leff JW, Fierer N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8: e59310.
- Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY. 2021. Novel approaches for the identification of microbial communities in kimchi: MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol. 94: 103641.
- Kim D, Hong S, Kim YT, Ryu S, Kim HB, Lee JH. 2018. Metagenomic approach to identifying foodborne pathogens on chinese cabbage. J. Microbiol. Biotechnol. 28: 227-235. https://doi.org/10.4014/jmb.1710.10021
- Yu YC, Yum SJ, Jeon DY, Jeong HG. 2018. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechnol. 28: 1318-1331. https://doi.org/10.4014/jmb.1803.03007
- Jeon DY, Yum SJ, Seo DW, Kim SM, Jeong HG. 2019. Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res. Int. 126: 108664.
- Tatsika S, Karamanoli K, Karayanni H, Genitsaris S. 2019. Metagenomic characterization of bacterial communities on ready-to-eat vegetables and effects of household washing on their diversity and composition. Pathogens 8: 37.
- Seo DW, Yum SJ, Lee HR, Kim SM, Jeong HG. 2022. Microbiota analysis and microbiological hazard assessment in chinese chive (Allium tuberosum Rottler) depending on retail types. J. Microbiol. Biotechnol. 32: 195-204. https://doi.org/10.4014/jmb.2112.12013
- Gu G, Ottesen A, Bolten S, Ramachandran P, Reed E, Rideout S, et al. 2018. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol. 73: 73-84. https://doi.org/10.1016/j.fm.2018.01.002
- Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37: 850-852. https://doi.org/10.1038/s41587-019-0190-3
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13: 581-583. https://doi.org/10.1038/nmeth.3869
- Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. 2022. Vegan: community ecology package R package, version 2.6-2.
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.
- Villanueva RAM, Chen ZJ. 2019. ggplot2: Elegant graphics for data analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 17: 160-167. https://doi.org/10.1080/15366367.2019.1565254
- Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. 2013. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol. Lett. 346: 146-154. https://doi.org/10.1111/1574-6968.12216
- Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, et al. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378-1390. https://doi.org/10.1038/ismej.2011.192
- Celandroni F, Salvetti S, Gueye SA, Mazzantini D, Lupetti A, Senesi S, et al. 2016. Identification and pathogenic potential of clinical Bacillus and Paenibacillus isolates. PLoS One 11: e0152831.
- Innerebner G, Knief C, Vorholt JA. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77: 3202-3210. https://doi.org/10.1128/AEM.00133-11
- Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K, Murakami K, et al. 1998. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85: 731-736. https://doi.org/10.1111/j.1365-2672.1998.00586.x
- Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7: 514-525. https://doi.org/10.1038/nrmicro2163
- Denton M, Kerr KG. 1998. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 11: 57-80. https://doi.org/10.1128/CMR.11.1.57
- Kirby JT, Sader HS, Walsh TR, Jones RN. 2004. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: Report from the SENTRY antimicrobial surveillance program (1997-2001). J. Clin. Microbiol. 42: 445-448. https://doi.org/10.1128/JCM.42.1.445-448.2004
- Hoque SN, Graham J, Kaufmann ME, Tabaqchali S. 2001. Chryseobacterium (Flavobacterium) meningosepticum outbreak associated with colonization of water taps in a neonatal intensive care unit. J. Hosp. Infect. 47: 188-192. https://doi.org/10.1053/jhin.2000.0908
- Gao B, Gupta RS. 2012. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol. Mol. Biol. Rev. 76: 66-112. https://doi.org/10.1128/MMBR.05011-11
- Medjahed H, Gaillard JL, Reyrat JM. 2010. Mycobacterium abscessus: A new player in the mycobacterial field. Trends Microbiol. 18: 117-123. https://doi.org/10.1016/j.tim.2009.12.007
- Bijlani S, Singh NK, Eedara VVR, Podile AR, Mason CE, Wang CCC, et al. 2021. Methylobacterium ajmalii sp. nov., isolated from the international space station. Front. Microbiol. 12: 639396.
- Green PN, Ardley JK. 2018. Review of the genus Methylobacterium and closely related organisms: A proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int. J. Syst. Evol. Microbiol. 68: 2727-2748. https://doi.org/10.1099/ijsem.0.002856
- Fiester SE, Actis LA. 2013. Stress responses in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol. 8: 353-365. https://doi.org/10.2217/fmb.12.150
- Vail KJ, da Silveira BP, Bell SL, Cohen ND, Bordin AI, Patrick KL, et al. 2021. The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages. PLoS Pathog. 17: e1009888.