DOI QR코드

DOI QR Code

Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus

  • Min Jae Kim (Division of Applied Life Science (BK21 Four), Graduate School) ;
  • Tae Jin Kim (Division of Applied Life Science (BK21 Four), Graduate School) ;
  • Yun Ji Kang (Division of Applied Life Science (BK21 Four), Graduate School) ;
  • Ji Yeon Yoo (Division of Applied Life Science (BK21 Four), Graduate School) ;
  • Jeong Hwan Kim (Division of Applied Life Science (BK21 Four), Graduate School)
  • Received : 2022.09.15
  • Accepted : 2022.12.19
  • Published : 2023.02.28

Abstract

A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C100826711). Kim MJ, Kim TJ, Kang YJ, and Yoo JY have been supported by BK21 four program from MOE, Korea. T. halophilus 31 and 32 strains were kindly provided by professor Lee, Jong-Hoon at Kyonggi University, Korea.

References

  1. Kim KH, Lee SH, Chun BH, Jeong SE, Jeon CO. 2019. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation. Food Microbiol. 82: 465-473. https://doi.org/10.1016/j.fm.2019.02.017
  2. Jeong, DW, Heo S, Lee JH. 2017. Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-saltfermented soybean paste. Food Microbiol. 62: 92-98. https://doi.org/10.1016/j.fm.2016.10.012
  3. Udomsil N, Rodtong S, Tanasupawat S, Yongsawatdigul J. 2010. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds. Int. J. Food Microbiol. 141: 186-194. https://doi.org/10.1016/j.ijfoodmicro.2010.05.016
  4. Kim JA, Yao Z, Perumal V, Kim HJ, Kim JH. 2018. Properties of Tetragenococcus halophilus strains isolated from myeolchi (anchovy)- jeotgal. Microbiol. Biotechnol. Lett. 46: 313-319. https://doi.org/10.4014/mbl.1804.04016
  5. Tanasupawat S, Thongsanit J, Okada S, Komagata K. 2002. Lactic acid bacteria isolated from soy sauce mash in Thailand. J. Gen. Appl. Microbiol. 48: 201-209. https://doi.org/10.2323/jgam.48.201
  6. Collins MD, Williams AM, Wallbanks S. 1990. The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol. Lett. 70: 255-262. https://doi.org/10.1111/j.1574-6968.1990.tb14006.x
  7. Juste A, Van Trappen S, Verreth C, Cleenwerck I, De Vos, Lievens B, Willems KA. 2012. Characterization of Tetragenococcus strains from sugar thick juice reveals a novel species, Tetragenococcus osmophilus sp. nov., and divides Tetragenococcus halophilus into two subspecies, T. halophilus subsp. halophilus subsp. nov. and T. halophilus subsp. flandriensis subsp. nov. Int. J. Syst. Evol. Microbiol. 62: 129-137. https://doi.org/10.1099/ijs.0.029157-0
  8. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agric. Food Chem. 59: 8401-8408. https://doi.org/10.1021/jf201953v
  9. Lee JH, Halgerson JS, Kim JH, O'Sullivan DJ. 2007. Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector. Appl. Environ. Microbiol. 73: 4417-4424. https://doi.org/10.1128/AEM.00099-07
  10. Jeong SJ, Park JY, Lee HJ, Kim JH. 2007. Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2. Plasmid  57: 314-323. https://doi.org/10.1016/j.plasmid.2006.09.003
  11. Park JY, Jeong SJ, Sa HD, Lee JY, Liu X, Cho MJ, et al. 2015. Construction of a shuttle vector based on the small cryptic plasmid pJY33 from Weissella cibaria 33. Plasmid 79: 30-36. https://doi.org/10.1016/j.plasmid.2015.03.008
  12. Benachour A, Frere J, Boutibonnes P, Auffray Y. 1995. Characterization and replication mode determination of the minimal replicon of Tetragenococcus halophilus ATCC33315 plasmid pUCL287. Biochimie 77: 868-874. https://doi.org/10.1016/0300-9084(95)90005-5
  13. Benachour A, Frere J, Flahaut S, Novel G, Auffray Y. 1997. Molecular analysis of the replication region of the theta-replicating plasmid pUCL287 from Tetragenococcus (Pediococcus) halophilus ATCC33315.  Mol. Gen. Genet. 255: 504-513. https://doi.org/10.1007/s004380050523
  14. Benachour A, Auffray Y, Hartke A. 2007. Construction of plasmid vectors for screening replicons from gram-positive bacteria and their use as shuttle cloning vectors. Curr. Microbiol. 54: 342-347. https://doi.org/10.1007/s00284-006-0358-1
  15. Phumkhachorn P, Rattanachaikunsopon P. 2016. A broad host range food-grade cloning vector for lactic acid bacteria. Biologia 71: 457-463. https://doi.org/10.1515/biolog-2016-0064
  16. Axelsson L, Holck A, Birkeland S, Aukrust T, Blom H. 1993. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl. Environ. Microbiol. 59: 2868-2875. https://doi.org/10.1128/aem.59.9.2868-2875.1993
  17. Eom HJ, Moon JS, Cho SK, Kim JH, Han NS. 2012. Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi. Plasmid. 67: 35-43. https://doi.org/10.1016/j.plasmid.2011.11.003
  18. Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9. https://doi.org/10.1128/jb.154.1.1-9.1983
  19. O'Sullivan DJ, Klaenhammer TR. 1993. Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp.  Appl. Environ. Microbiol. 59: 2730-2733. https://doi.org/10.1128/aem.59.8.2730-2733.1993
  20. Sambrook JF, Russell DW. 2001. Molecular cloning: a laboratory manual. 3rd Ed. Cold Spring Harbor Laboratory Press, New York, USA.
  21. Berthier F, Zagorec M, Champomier-Verges M, Ehrlich SD, Morel-Deville F. 1996. Efficient transformation of Lactobacillus sake by electroporation. Microbiology 142: 1273-1279. https://doi.org/10.1099/13500872-142-5-1273
  22. Jin Q, Eom HJ, Jung JY, Moon JS, Kim JH, Han NS. 2012. Optimization of electrotransformation conditions for Leuconostoc mesenteroides subsp. mesenteroides ATCC8293. Lett. Appl. Microbiol. 55: 314-321. https://doi.org/10.1111/j.1472-765X.2012.03300.x
  23. Jeong DW, Heo S, Kim TJ, Kim JH. 2021. Complete genome sequence of Tetragenococcus halophilus CY54 showing protease and aminopeptidase activity. Kor. J. Microbiol. 57: 223-225.
  24. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  25. Magboul AA, McSweeney PL. 1999. Purification and characterization of an aminopeptidase from Lactobacillus curvatus DPC2024. Int. Dairy J. 9: 107-116. https://doi.org/10.1016/S0958-6946(99)00029-1
  26. Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. 2019. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol. 83: 36-47. https://doi.org/10.1016/j.fm.2019.04.009
  27. Shareck J, Choi Y, Lee B, Miguez CB. 2004. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit. Rev. Biotechnol. 24: 155-208. https://doi.org/10.1080/07388550490904288
  28. Moscoso M, Eritja R, Espinosa M. 1997. Initiation of replication of plasmid pMV158: mechanisms of DNA strand-transfer reactions mediated by the initiator RepB protein. J. Mol. Biol. 268: 840-856. https://doi.org/10.1006/jmbi.1997.1012
  29. Biet F, Cenatiempo Y, Fremaux C. 1999. Characterization of pFR18, a small cryptic plasmid from Leuconostoc mesenteroides ssp. mesenteroides FR52, and its use as a food grade vector. FEMS Microbiol. Lett. 179: 375-383. https://doi.org/10.1111/j.1574-6968.1999.tb08752.x
  30. Sudhamani M, Ismaiel E, Geis A, Batish V, Heller KJ. 2008. Characterisation of pSMA23, a 3.5 kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid 59: 11-19. https://doi.org/10.1016/j.plasmid.2007.09.001
  31. Suebwongsa N, Lulitanond V, Mayo B, Yotpanya P, Panya, M. 2016. Development of an Escherichia coli-Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei. Springerplus 5: 169.