DOI QR코드

DOI QR Code

Yeast Extract: Characteristics, Production, Applications and Future Perspectives

  • Zekun Tao (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Haibo Yuan (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Meng Liu (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Qian Liu (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Siyi Zhang (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Hongling Liu (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Yi Jiang (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Di Huang (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences)) ;
  • Tengfei Wang (State Key Laboratory of Bio-Based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences))
  • Received : 2022.07.27
  • Accepted : 2022.10.11
  • Published : 2023.02.28

Abstract

Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.

Keywords

Acknowledgement

This work was supported by the foundation of National Natural Science Foundation of China (32001632); Key Research and Development Program of Shandong Province (2022CXGC010506); Natural Science Foundation of Shandong Province (ZR2020QB041); Qilu University of Technology of Cultivating Subject for Biology and Biochemistry (No. 202007, No. 202018); Key Research and Development Program of Zibo (2021XCYF0085); and State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences (ZZ20200119).

References

  1. Boonraeng S, Foo-Trakul P, Kanlayakrit WJKJ. 2000. Effects of chemical, biochemical and physical treatments on the kinetics and on the role of some endogenous enzymes action of baker's yeast lysis for food-grade yeast extract production. Kasetsart J. 34: 270-278. 
  2. Podpora B, Swiderski FJJoFP, Technology. 2018. Spent brewer's yeast autolysates as a new and valuable component of functional food and dietary supplements. J. Food Process Technol. 6: 1000526. 
  3. Demirgul F, Simsek O, Bozkurt F, Dertli E, Sagdic O. 2022. Production and characterization of yeast extracts produced by Saccharomyces cerevisiae, Saccharomyces boulardii and Kluyveromyces marxianus. Prep. Biochem. Biotechnol. 52: 657-667.  https://doi.org/10.1080/10826068.2021.1983833
  4. Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner F-J. 2019. Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur. Food Res. Technol. 245: 1169-82.  https://doi.org/10.1007/s00217-019-03237-9
  5. Alim A, Song H, Yang C, Liu Y, Zou T, Zhang Y, et al. 2019. The changes of the perception of bitter constituents in thermally treated yeast extract. J. Food Agric. 99: 4651-4658.  https://doi.org/10.1002/jsfa.9705
  6. Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IMPLVO. 2016. Nutritive value, antioxidant activity and phenolic compounds profile of brewer's spent yeast extract. J. Food Compos. Anal. 52: 44-51.  https://doi.org/10.1016/j.jfca.2016.07.006
  7. Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner F-J. 2019. Spent yeast from brewing processes: a biodiverse starting material for yeast extract production. Fermentation 5: doi.org/10.3390/fermentation5020051. 
  8. Takalloo Z, Nikkhah M, Nemati R, Jalilian N, Sajedi RH. 2020. Autolysis, plasmolysis and enzymatic hydrolysis of baker's yeast (Saccharomyces cerevisiae): a comparative study. World J. Microbiol. Biotechnol. 36: 68. 
  9. Jouany JP, Yiannikouris A, Bertin G. 2004. The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified. J. Food Protect. 8: 26-50. 
  10. Khawaja, Muhammad, Bashir, Jae-Suk, Choi. 2017. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int. J. Mol. Sci. 18: 1906. 
  11. Rakowska R, Sadowska A, Dybkowska E, Swiderski F. 2017. Spent yeast as natural source of functional food additives. Roczniki Panstwowego Zakadu Higieny 68: 115-121. 
  12. Bayarjargal M, Munkhbat E, Ariunsaikhan T, Odonchimeg M, Regdel D. 2014. Utilization of spent brewer's yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate. Mongol. J. Chem. 12: 88-91.  https://doi.org/10.5564/mjc.v12i0.179
  13. Xi Q, Lai W, Cui Y, Wu H, Zhao T. 2019. Effect of yeast extract on seedling growth promotion and soil Improvement in afforestation in a semiarid chestnut soil area. Forests 10: 76. 
  14. Coelho E, Nunes A, Brandao T, Coimbra] MA. 2015. Valuation of brewers spent yeast polysaccharides: A structural characterization approach. Carbohydr.. Polym. 116: 215-222.  https://doi.org/10.1016/j.carbpol.2014.03.010
  15. Chae HJ, Joo H, In MJ. 2001. Utilization of brewer's yeast cells for the production of food-grade yeast extract. Part 1: Effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour. Technol. 76: 253-258.  https://doi.org/10.1016/S0960-8524(00)00102-4
  16. Tachibana S, Watanabe K, Konishi M. 2019. Estimating effects of yeast extract compositions on Escherichia coli growth by a metabolomics approach. J. Biosci. Bioeng. 128: 468-474.  https://doi.org/10.1016/j.jbiosc.2019.03.012
  17. Yun CH, Estrada A, Kessel AV, Park BC, Laarveld B. 2003. β-Glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol. 35: 67-75.  https://doi.org/10.1016/S0928-8244(02)00460-1
  18. Pan L, Ma XK, Wang HL, Xu X, Zeng ZK, Tian QY, et al. 2016. Enzymatic feather meal as an alternative animal protein source in diets for nursery pigs. Anim. Feed Sci. Technol. 212: 112-121.  https://doi.org/10.1016/j.anifeedsci.2015.12.014
  19. Burrells C, Williams PD, Forno PF. 2001. Dietary nucleotides: a novel supplement in fish feeds. 1. Effects on resistance to disease in salmonids. Aquaculture 199: 159-169.  https://doi.org/10.1016/S0044-8486(01)00577-4
  20. Li P, Gatlin DM. 2003. Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops×M. saxatilis). Aquaculture 219: 681-692.  https://doi.org/10.1016/S0044-8486(02)00653-1
  21. Dijk A, Everts H, Nabuurs M, Margry R, Beynen AC. 2001. Growth performance of weanling pigs fed spray-dried animal plasma: a review. Livestock Product Sci. 68: 263-274.  https://doi.org/10.1016/S0301-6226(00)00229-3
  22. Wu Y, Pan L, Tian Q, Piao X. 2018. Comparative digestibility of energy and ileal amino acids in yeast extract and spray-dried porcine plasma fed to pigs. Arch. Anim. Nutr. 72: 176-184.  https://doi.org/10.1080/1745039X.2017.1413827
  23. Waszkiewicz-Robak B. 2013. Spent brewer's yeast and β-glucans isolated from them as diet components modifying blood lipid metabolism disturbed by an atherogenic diet. Lipid Metab. 12: 261-290.  https://doi.org/10.5772/51530
  24. Podpora B, Widerski F, Sadowska A, Rakowska R, Wasiak-Zys G. 2016. Spent brewer's yeast extracts as a new component of functional food. Arch. Anim. Nutr. 34: 554-563.  https://doi.org/10.17221/419/2015-CJFS
  25. Gutcho S. 1973. Proteins from hydrocarbons: Proteins from hydrocarbons. 
  26. Trevelyan WE. 2010. Determination of uric acid precursors in dried yeast and other forms of single-cell protein. J. Sci. Food Agric. 26: 1673-1680.  https://doi.org/10.1002/jsfa.2740261108
  27. Liu Y, Huang G, Lv M. 2018. Extraction, characterization and antioxidant activities of mannan from yeast cell wall. Int. J. Biol. Macromol. 118: 952-956.  https://doi.org/10.1016/j.ijbiomac.2018.06.145
  28. Tang Q, Huang G, Zhao F, Zhou L, Huang S, Li H. 2017. The antioxidant activities of six (1→3)-β-d-glucan derivatives prepared from yeast cell wall. Int. J. Biol. Macromol. 98: 216-221.  https://doi.org/10.1016/j.ijbiomac.2017.01.132
  29. Mei X, Tang Q, Huang G, Long R, Huang H. 2019. Preparation, structural analysis and antioxidant activities of phosphorylated (1→3)-β-d-glucan. Food Chem. 309: 125791. 
  30. Ye CL, Hu WL, Dai DH. 2011. Extraction of polysaccharides and the antioxidant activity from the seeds of Plantago asiatica L. Int. J. Biol. Macromol. 49: 466-470.  https://doi.org/10.1016/j.ijbiomac.2011.05.026
  31. Gaspar LR, Camargo FB, Gianeti MD, Maia Campos PMBG. 2008. Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food Chem. Toxicol. 46: 3493-500.  https://doi.org/10.1016/j.fct.2008.08.028
  32. Liu Y, Huang G. 2018. The derivatization and antioxidant activities of yeast mannan. Int. J. Biol. Macromol. 107: 755-761.  https://doi.org/10.1016/j.ijbiomac.2017.09.055
  33. Barbosa C, Lage P, Vilela A, Mendes-Faia A, Mendes-Ferreira A. 2014. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Express 4: 39. 
  34. Rizzo M, Ventrice D, Varone MA, Sidari R, Caridi A. 2006. HPLC determination of phenolics adsorbed on yeasts. J. Pharm. Biomed. Anal. 42: 46-55.  https://doi.org/10.1016/j.jpba.2006.02.058
  35. Bahut F, Romanet R, Sieczkowski N, Schmitt-Kopplin P, Nikolantonaki M, Gougeon RD. 2020. Antioxidant activity from inactivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine. Food Chem . 325: 126941. 
  36. Schmacht M, Lorenz E, Senz M. 2017. Microbial production of glutathione. World J. Microbiol. Biotechnol. 33: 106. 
  37. Vucurovic VM, Radovanovic VB, Filipovic JS, Filipovic VS, Kosutic MB, Novkovic ND, et al. 2022. Influence of yeast extract enrichment on fermentative activity of Saccharomyces cerevisiae and technological properties of spelt bread. Chem Ind. Chem. Eng. Quar. 28: 57-66.  https://doi.org/10.2298/CICEQ200915016V
  38. Festring D, Hofmann T. 2010. Discovery of n2-(1-Carboxyethyl)guanosine 5'-monophosphate as an umami-enhancing maillard-modified nucleotide in yeast extracts. J. Agric. Food Chem. 58: 10614-10622.  https://doi.org/10.1021/jf102899j
  39. Lin ML, Qian-Qian XU, Song HL, Pei LI, Xiong J, Shu-Sheng LI. 2013. Separation and identification of aroma compounds in yeast extract. Food Sci. 34: 259-262. 
  40. Zheng Y, Yang P, Chen E, Song H, Xiong J. 2020. Investigating characteristics and possible origins of off -odor substances in various yeast extract products. J. Food Biochem. 44: e13184. 
  41. Zhao J, Fleet GH. 2005. Degradation of RNA during the autolysis of Saccharomyces cerevisiae produces predominantly ribonucleotides. J. Ind. Microbiol. Biotechnol. 32: 415-423.  https://doi.org/10.1007/s10295-005-0008-9
  42. Hajeb SJ. 2010. Glutamate. Its applications in food and contribution to health. Appetite 55: 1-10.  https://doi.org/10.1016/j.appet.2010.05.002
  43. Wei CK, Ni ZJ, Thakur K, Liao AM, Huang JH, Wei ZJ. 2019. Color and flavor of flaxseed protein hydrolysates Maillard reaction products: effect of cysteine, initial pH, and thermal treatment. Int. J. Food Proper. 22: 84-99.  https://doi.org/10.1080/10942912.2019.1573830
  44. Yang C, Song HL, Chen FJJoFS. 2012. Response surface methodology for meat-like odorants from Maillard reaction with glutathione I: the optimization analysis and the general pathway exploration. J. Food Sci. 77: 966-974.  https://doi.org/10.1111/j.1750-3841.2012.02863.x
  45. Cerny C. 2010. The aroma side of the maillard reaction. Ann. N Y Acad. Sci. 1126: 66-71.  https://doi.org/10.1196/annals.1433.011
  46. Raza A, Song H, Raza J, Li P, Li K, Yao J. 2020. Formation of beef-like odorants from glutathione-enriched yeast extract via Maillard reaction. Food Funct. 11: 8583-601.  https://doi.org/10.1039/D0FO01946A
  47. Alim A, Song H, Liu Y, Zou T, Zhang S. 2018. Flavour-active compounds in thermally treated yeast extracts. J. Sci. Food Agric. 98: 3774-3783.  https://doi.org/10.1002/jsfa.8891
  48. Ma CL, Wang JW, Chen X, Li X, Li P, Li K, et al. 2022. Investigation on the elimination of yeasty flavour in yeast extract by mixed culture of lactic acid bacteria and yeast. Int. J. Food Sci. Techol. 57: 1016-1025.  https://doi.org/10.1111/ijfs.15463
  49. Norio I, Ichiro O, Kuniki K, Toshiaki S, Ichizo S, Hideo O, et al. 1988. Role of the hydrophobic amino acid residue in the bitterness of peptides. Agric. Biol. Chem. 52: 91-94.  https://doi.org/10.1080/00021369.1988.10868631
  50. Milic TV, Rakin M, Siler-Marinkovic S. 2007. Utilization of baker's yeast (Saccharomyces cerevisiae) for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery. J. Serb. Chem. Soc. 72: 451-457.  https://doi.org/10.2298/JSC0705451V
  51. Buttrick P. 2006. Recovery of beer from tank bottoms - a review. Brewer Distiller 2: 19-22. 
  52. Bryant RW, Cohen SD. 2015. Characterization of hop acids in spent brewer's yeast from craft and multinational sources. J. Am. Soc. Brew Chem. 73: 159-164.  https://doi.org/10.1094/ASBCJ-2015-0315-01
  53. Tanguler H, Erten H. 2008. Utilisation of spent brewer's yeast for yeast extract production by autolysis: The effect of temperature. Food Bioprod. Process 86: 317-321.  https://doi.org/10.1016/j.fbp.2007.10.015
  54. Schneiderbanger J, Grammer M, Jacob F, Hutzler M. 2019. Statistical evaluation of beer spoilage bacteria by real-time PCR analyses from 2010 to 2016. J. Inst. Brew. 124: 173-181.  https://doi.org/10.1002/jib.486
  55. Shotipruk A, Kittianong P, Suphantharika M, Muangnapoh C. 2005. Application of rotary microfiltration in debittering process of spent brewer's yeast. Bioresour. Technol. 96: 1851-1859.  https://doi.org/10.1016/j.biortech.2005.01.035
  56. Wang J, Li M, Zheng F, Niu C, Liu C, Li Q, et al. 2018. Cell wall polysaccharides: before and after autolysis of brewer's yeast. World J. Microbiol. Biotechnol. 34: 137. 
  57. Belem, M. AF, Gibss, B. F, Lee, B. H. 1997. Enzymatic production of ribonucleotides from autolysates of Kluyveromyces marxianus grown on whey. J. Food Sci. 62: 851-857.  https://doi.org/10.1111/j.1365-2621.1997.tb15470.x
  58. Felix JF, Mathias H, Frank-Jurgen M. 2018. Comparison of various industrially applicable disruption methods to produce yeast extract using spent yeast from top-fermenting beer production: influence on amino acid and protein content. Eur. Food Res. Technol. 245: 95-109.  https://doi.org/10.1007/s00217-018-3143-z
  59. Procopio S, Krause D, Hofmann T, Becker T. 2013. Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. LWT Food Sci. Technol. 51: 423-432.  https://doi.org/10.1016/j.lwt.2012.11.022
  60. Champagne CP, Barrette J, Goulet J. 1999. Interaction between pH, autolysis promoters and bacterial contamination on the production of yeast extracts. Food Res. Int. 32: 575-583.  https://doi.org/10.1016/S0963-9969(99)00133-7
  61. Tanguler H, Erten H. 2008. Utilisation of spent brewer's yeast for yeast extract production by autolysis: the effect of temperature. J. Inst. Brew. 86: 317-321.  https://doi.org/10.1016/j.fbp.2007.10.015
  62. Union CO. 2008. Regulation (EC) No 1272/2008 of the european parliament and of the council. 
  63. Joanna Berlowska A, Marta Dudkiewicz A, Dorota Kregiel A, Agata Czyzowska A, Izabela Witonska A. 2015. Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Enzyme Microb. Technol. 75-76: 44-48.  https://doi.org/10.1016/j.enzmictec.2015.04.007
  64. Zhong-Ying LU, Chen SX, Yao YY, Xing MM, Xie Y. 2015. Research of protein separation and purification methods. Guangzhou Chem Industry. 
  65. Ronnow B, Olsson L, Nielsen J, Mikkelsen JD. 1999. Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast. J. Biotechnol. 72: 213-228.  https://doi.org/10.1016/S0168-1656(99)00108-X
  66. Papanayotou I, Sun B, Roth AF, Davis NG. 2010. Protein aggregation induced during glass bead lysis of yeast. Yeast 27: 801-816.  https://doi.org/10.1002/yea.1771
  67. Medeiros FOD, Alves FG, Lisboa CR, Martins DDS, Kalil SJ. 2007. Ultrasonic waves and glass pearls: A new method of extraction of β-galactosidase for use in laboratory. Quimica Nova. 31: 336-339.  https://doi.org/10.1590/S0100-40422008000200028
  68. Liu M, Zhang M, Lin S, Liu J, Yang Y, Jin Y. 2012. Optimization of extraction parameters for protein from beer waste brewing yeast treated by pulsed electric fields (PEF). Afr. J. Microbiol. Res. 6: 4739-4746.  https://doi.org/10.5897/AJMR12.117
  69. Vieira EF, Melo A, Ferreira IMPLVO. 2017. Autolysis of intracellular content of Brewer's spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT Food Sci. Technol. 82: 255-259.  https://doi.org/10.1016/j.lwt.2017.04.046
  70. Verduyn C, Suksomcheep A, Suphantharika M. 1999. Effect of high pressure homogenization and papain on the preparation of autolysed yeast extract. World J. Microbiol. Biotechnol. 15: 57-63.  https://doi.org/10.1023/A:1008818511497
  71. Powell CD, Quain DE, Smart KA. 2003. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. 3: 149-157.  https://doi.org/10.1016/S1567-1356(03)00002-3
  72. Requirements E. 1985. Report of a joint FAO/WHO/UNU Expert consultation. World Health Organtechrep. pp. 724. 
  73. Zhou XY, Guo T, Lu YL, Hadiatullah H, Li P, Ding KL, et al. 2022. Effects of amino acid composition of yeast extract on the microbiota and aroma quality of fermented soy sauce. Food Chem. 393: 133289. 
  74. Alim A, Song H, Zou T. 2020. Analysis of meaty aroma and umami taste in thermally treated yeast extract by means of sensory-guided screening. Eur. Food Res. Technol. 246: 2119-2133.  https://doi.org/10.1007/s00217-020-03561-5
  75. Smith EA, Myburgh J, Osthoff G, Wit MD. 2014. Acceleration of yoghurt fermentation time by yeast extract and partial characterisation of the active components. J. Dairy Res. 81: 417-423.  https://doi.org/10.1017/S0022029914000429
  76. Raikos V, Grant SB, Hayes H, Ranawana V. 2018. Use of β-glucan from spent brewer's yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception. J. Dairy Sci. 101: 5821-5831.  https://doi.org/10.3168/jds.2017-14261
  77. Christ JJ, Blank LM. 2019. Saccharomyces cerevisiae containing 28% polyphosphate and production of a polyphosphate-rich yeast extract thereof. FEMS Yeast Res. 19: foz011. 
  78. Shen QW, Swartz DR. 2010. Influence of salt and pyrophosphate on bovine fast and slow myosin S1 dissociation from actin. Meat Sci. 84: 364-370.  https://doi.org/10.1016/j.meatsci.2009.09.003
  79. Kaelle GCB, Souza CMM, Bastos TS, Vasconcellos RS, de Oliveira SG, Felix AP. 2022. Diet digestibility and palatability and intestinal fermentative products in dogs fed yeast extract. Ital. J. Anim. Sci. 21: 802-810.  https://doi.org/10.1080/1828051X.2022.2054733
  80. Esteban MA, Cuesta A, OrtunO J, Meseguer J. 2001. Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish Shellfish Immunol. 11: 303-315.  https://doi.org/10.1006/fsim.2000.0315
  81. Pongpet J, Ponchunchoovong S, Payooha K. 2016. Partial replacement of fishmeal by brewer's yeast (Saccharomyces cerevisiae) in the diets of Thai Panga (Pangasianodon hypophthalmus×Pangasius bocourti). Aquacult. Nutr. 22: 575-585.  https://doi.org/10.1111/anu.12280
  82. Thanardkit P, Khunrae P, Suphantharika M, Verduyn C. 2002. Glucan from spent brewer's yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed. World J. Microbiol. Biotechnol. 18: 527-539.  https://doi.org/10.1023/A:1016322227535
  83. Andrews SR, Sahu NP, Pal AK, Mukherjee SC, Kumar S. 2011. Yeast extract, brewer's yeast and spirulina in diets for Labeo rohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Res. Vet. Sci. 91: 103-109.  https://doi.org/10.1016/j.rvsc.2010.08.009
  84. Huff GR, Huff WE, Farnell MB, Rath NC, Los Santos FS, Donoghue AM. 2010. Bacterial clearance, heterophil function, and hematological parameters of transport-stressed turkey poults supplemented with dietary yeast extract. Poult. Sci. 89: 447-456.  https://doi.org/10.3382/ps.2009-00328
  85. Huff GR, Dutta V, Huff WE, Rath NC. 2011. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity. Br. Poult. Sci. 52: 446-455.  https://doi.org/10.1080/00071668.2011.600753
  86. Soltanian S, Stuyven E, Cox E, Sorgeloos P, Bossier P. 2008. β-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol. 35: 109-138.  https://doi.org/10.1080/10408410902753746
  87. Yang Y, Iji PA, Choct M. 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J. 65: 97-114.  https://doi.org/10.1017/S0043933909000087
  88. Cqta B, Jyl A, Ycj A, Yyy A, Xcz A, Mxc A, et al. 2021. Effects of dietary supplementation of different amounts of yeast extract on oxidative stress, milk components, and productive performance of sows - ScienceDirect. Anim. Feed. Sci. Technol. 274: 114648. 
  89. Zhao L, Wang W, Huang X, Guo T, Wen W, Feng L, et al. 2015. The effect of replacement of fish meal by yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus vannamei. Aquac. Res. 48: 311-320.  https://doi.org/10.1111/are.12883
  90. Huynh D, Kaschabek SR, Schlmann M. 2020. Effect of inoculum history, growth substrates and yeast extract addition on inhibition of Sulfobacillus thermosulfidooxidans by NaCl. Res. Microbiol. 171: 252-259.  https://doi.org/10.1016/j.resmic.2020.08.004
  91. Proust L, Sourabie A, Pedersen M, Besanon I, Juillard V. 2019. Insights into the complexity of yeast extract peptides and their utilization by Streptococcus thermophilus. Front. Microbiol. 10: 906. 
  92. Proust L, Haudebourg E, Sourabie A, Pedersen M, Juillard V. 2020. Multi-omics approach reveals how yeast extract peptides shape Streptococcus thermophilus metabolism. Appl. Environ. Microbiol. 86: e01446-20. 
  93. Smith JS, Hillier AJ, Lees GJ. 1975. The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. J. Dairy Res. 42: 123-138.  https://doi.org/10.1017/S0022029900015156
  94. Kevvai K, Kutt M-L, Nisamedtinov I, Paalme T. 2014. Utilization of 15N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids. Antonie Van Leeuwenhoek 105: 511-522.  https://doi.org/10.1007/s10482-013-0103-2
  95. Vazquez JA, Montemayor MI, Fraguas J, Murado MA. 2010. Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb. Cell Fact. 9: 46. 
  96. Liu L, Liu Y, Li J, Du G, Chen J. 2011. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact. 10: 99. 
  97. Hernandez-Cortes G, Valle-Rodriguez JO, Herrera-Lopez EJ, Diaz-Montano DM, Gonzalez-Garcia Y, Escalona-Buendia HB, et al. 2016. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration. AMB Express 6: 47. 
  98. Li QZ, Liu QW, Wang X, Liao Q, Liu H, Wang QW. 2022. Yeast extract affecting the transformation of biogenic tooeleite and its stability. Appl. Sci. Basel. 12: 3290. 
  99. Shu M, He F, Li Z, Zhu X, Ma Y, Zhou Z, et al. 2020. Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res. Lett. 15: 14. 
  100. Bentley JP, Hunt Tk, Weiss JB, Taylor CM, Hanson AN, Davis GH, Halliday BJ. 1990. Peptides from live yeast cell derivative stimulate wound healing. Arch. Surg. 125: 641-646.  https://doi.org/10.1001/archsurg.1990.01410170089019
  101. Kim KS, Yun HS. 2006. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme Microb. Technol. 39: 496-500.  https://doi.org/10.1016/j.enzmictec.2005.12.020
  102. Draelos Z, Dahl A, Yatskayer M, Chen N, Krol Y, Oresajo C. 2013. Dyspigmentation, skin physiology, and a novel approach to skin lightening. J. Cosmet. Dermatol. 12: 247-253.  https://doi.org/10.1111/jocd.12066
  103. Cesarini JP, Michel L, Maurette JM, Adhoute H, Bejot M. 2010. Immediate effects of UV radiation on the skin: modification by an antioxidant complex containing carotenoids. Photodermatol. Photoimmunol. Photomed. 19: 182-189.  https://doi.org/10.1034/j.1600-0781.2003.00044.x
  104. Pillemer L, Schoenberg M, Blum L, Wurz L. 1955. Properdin system and immunity. II. Interaction of the properdin system with polysaccharides. Science 122: 545-549.  https://doi.org/10.1126/science.122.3169.545
  105. Vetvicka V, Vetvickova J. 2010. 1, 3-Glucan: silver bullet or hot air? Open Glycosci. 3: 1-6. 
  106. Rachita DP, Aseem S, Ravina S, John M, Maja K, Andy G, et al. 2020. Novel yeast extract is superior to colloidal oatmeal in providing rapid itch relief. J. Cosmet. Dermatol. 20: 207-209.  https://doi.org/10.1111/jocd.13436
  107. Zhang Y, Tan Y, Zou Y, Bulat V, Mihic LL, Kovacevic M, et al. 2020. Yeast extract demonstrates rapid itch relief in chronic pruritus. J. Cosmet. Dermatol. 19: 2131-2134.  https://doi.org/10.1111/jocd.13265
  108. Zanello G, Meurens F, Berri M, Chevaleyre C, Melo S, Auclair E, et al. 2011. Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells. Vet. Immunol. Immunopathol. 141: 133-138.  https://doi.org/10.1016/j.vetimm.2011.01.018
  109. Rafael LL, Candelaria JI, Adriana V, Woodruff SI, Sallis JFJC. 2019. Concordance between parental and children's reports of parental smoking prompts. Chest 125: 429-434.  https://doi.org/10.1378/chest.125.2.429
  110. Yun-Ho K, Young-Hee K. 2019. Dry-yeast extracts curtails pulmonary inflammation and tissue destruction in a model of experimental emphysema (P06-078-19). Antioxidants 8: 349. 
  111. Zechner-Krpan, Petravic-Tominac V, Krbavcic V, Grba I, Berkovic S, Katarina. 2009. Potential application of yeast β-Glucans in food industry. Agric. Conspec. Sci. 74: 277-282. 
  112. Stier H. 2014. Immune-modulatory effects of dietary yeast β-1,3/1,6-d-glucan. Nutr. J. 13: 38. 
  113. Vetvicka V, Vetvickova J. 2011. β(1-3)-d-glucan affects adipogenesis, wound healing and inflammation. Orient. Pharm. Exp. Med. 11: 169-175.  https://doi.org/10.1007/s13596-011-0024-4
  114. Kong CS, Kim JA, Eom TK, Kim SK. 2010. Phosphorylated glucosamine inhibits adipogenesis in 3T3-L1 adipocytes. J. Nutr. Biochem. 21: 438-443.  https://doi.org/10.1016/j.jnutbio.2009.01.018
  115. Rayalam S, Yang JY, Della-Fera MA, Park HJ, Ambati S, Baile CA. 2009. Anti-obesity effects of xanthohumol plus guggulsterone in 3T3-L1 adipocytes. J. Med. Food 12: 846-853.  https://doi.org/10.1089/jmf.2008.0158
  116. Tanguler H, Erten H. 2009. The effect of different temperatures on autolysis of baker's yeast for the production of yeast extract. Turk J. Agric. For. 33: 149-154.  https://doi.org/10.3906/tar-0803-17
  117. Li X, Ye H, Xu CQ, Shen XL, Zhang XL, Huang C, et al. 2020. Transcriptomic analysis reveals MAPK signaling pathways affect the autolysis in baker's yeast. FEMS Yeast Res. 20: foaa036. 
  118. Conway J, Gaudreau H, Champagne CP. 2001. The effect of the addition of proteases and glucanases during yeast autolysis on the production and properties of yeast extracts. Can J. Microbiol. 47: 18-24.  https://doi.org/10.1139/w00-118
  119. Boonyeun P, Shotipruk A, Prommuak C, Suphantharika M, Muangnapoh C. 2011. Enhancement of amino acid production by two-step autolysis of spent brewer's yeast. Chem. Eng. Commun. 198: 1594-1602.  https://doi.org/10.1080/00986445.2011.560219
  120. Saksinchai S, Suphantharika M, Verduyn C. 2001. Application of a simple yeast extract from spent brewer's yeast for growth and sporulation of Bacillus thuringiensis subsp. kurstaki: a physiological study. World J. Microbiol Biotechnol. 17: 307-316.  https://doi.org/10.1023/A:1016717428583
  121. Amorim M, Pereira JO, Gomes D, Pereira CD, Pinheiro H, Pintado M. 2016. Nutritional ingredients from spent brewer's yeast obtained by hydrolysis and selective membrane filtration integrated in a pilot process. J. Food Eng. 185: 42-47.  https://doi.org/10.1016/j.jfoodeng.2016.03.032
  122. Pejin J, Radosavljevic M, KocicTanackov S, Markovic R, DjukicVukovic A, Mojovic L. 2019. Use of spent brewer's yeast in L - (+) lactic acid fermentation. J. Inst. Brewing 125: 357-363.  https://doi.org/10.1002/jib.572
  123. Marson GV, Castro R, Belleville MP, Hubinger M. 2020. Spent brewer's yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World J. Microbiol. Biotechnol. 36: 95.