DOI QR코드

DOI QR Code

The Effects of Protein and Supplements on Sarcopenia in Human Clinical Studies: How Older Adults Should Consume Protein and Supplements

  • Young Jin Jang (Major of Food Science and Technology, Seoul Women's University)
  • Received : 2022.10.12
  • Accepted : 2022.10.25
  • Published : 2023.02.28

Abstract

Sarcopenia is a condition in which muscle mass, strength, and performance decrease with age. It is associated with chronic diseases such as diabetes, cardiovascular disease, and hypertension, and contributes to an increase in mortality. Because managing sarcopenia is critical for maintaining good health and quality of life for the elderly, the condition has sparked concern among many researchers. To counteract sarcopenia, intake of protein is an important factor, while a lack of either protein or vitamin D is a major cause of sarcopenia. In addition, essential amino acids, leucine, β-hydroxy β-methylbutyrate (HMB), creatine, and citrulline are used as supplements for muscle health and are suggested as alternatives for controlling sarcopenia. There are many studies on such proteins and supplements, but it is necessary to actually organize the types, amounts, and methods by which proteins and supplements should be consumed to inhibit sarcopenia. In this study, the efficacy of proteins and supplements for controlling sarcopenia according to human clinical studies is summarized to provide suggestions about how the elderly may consume proteins, amino acids, and other supplements.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 321023052HD03021782040990000) and a research grant from Seoul Women's University (2020-0452).

References

  1. Santilli V, Bernetti A, Mangone M, Paoloni M. 2014. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 11: 177-180. https://doi.org/10.11138/ccmbm/2014.11.3.177
  2. Hong SH, Choi KM. 2020. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int. J. Mol. Sci. 21: 494.
  3. Gao K, Ma WZ, Huck S, Li BL, Zhang L, Zhu J, et al. 2021. Association between sarcopenia and depressive symptoms in Chinese older adults: evidence from the China health and retirement longitudinal study. Front. Med (Lausanne). 8: 755705.
  4. Xu J, Wan CS, Ktoris K, Reijnierse EM, Maier AB. 2022. Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis. Gerontology 68: 361-376. https://doi.org/10.1159/000517099
  5. Brown JC, Harhay MO, Harhay MN. 2016. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J. Cachexia Sarcopenia Muscle 7: 290-298. https://doi.org/10.1002/jcsm.12073
  6. Metter EJ, Talbot LA, Schrager M, Conwit R. 2002. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 57: B359-365. https://doi.org/10.1093/gerona/57.10.B359
  7. Anker SD, Morley JE, von Haehling S. 2016. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 7: 512-514. https://doi.org/10.1002/jcsm.12147
  8. Ziaaldini MM, Marzetti E, Picca A, Murlasits Z. 2017. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front. Med. (Lausanne) 4: 167.
  9. Chhetri JK, de Souto Barreto P, Fougere B, Rolland Y, Vellas B, Cesari M. 2018. Chronic inflammation and sarcopenia: a regenerative cell therapy perspective. Exp. Gerontol. 103: 115-123. https://doi.org/10.1016/j.exger.2017.12.023
  10. Coen PM, Musci RV, Hinkley JM, Miller BF. 2018. Mitochondria as a target for mitigating sarcopenia. Front. Physiol. 9: 1883.
  11. Morley JE. 2017. Hormones and Sarcopenia. Curr. Pharm. Des. 23: 4484-4492. https://doi.org/10.2174/1381612823666161123150032
  12. Coelho-Junior HJ, Calvani R, Azzolino D, Picca A, Tosato M, Landi F, et al. 2022. Protein intake and sarcopenia in older adults: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19: 8178.
  13. Bhasin S, Apovian CM, Travison TG, Pencina K, Moore LL, Huang G, et al. 2018. Effect of protein intake on lean body mass in functionally limited older men: a randomized clinical trial. JAMA Intern. Med. 178: 530-541. https://doi.org/10.1001/jamainternmed.2018.0008
  14. de Azevedo Bach S, Radaelli R, Beck Schemes M, Neske R, Garbelotto C, Roschel H, et al. 2022. Can supplemental protein to low-protein containing meals superimpose on resistance-training muscle adaptations in older adults? A randomized clinical trial. Exp. Gerontol. 162: 111760.
  15. Ten Haaf DSM, Eijsvogels TMH, Bongers C, Horstman AMH, Timmers S, de Groot L, et al. 2019. Protein supplementation improves lean body mass in physically active older adults: a randomized placebo-controlled trial. J. Cachexia Sarcopenia Muscle 10: 298-310. https://doi.org/10.1002/jcsm.12394
  16. Griffen C, Duncan M, Hattersley J, Weickert MO, Dallaway A, Renshaw D. 2022. Effects of resistance exercise and whey protein supplementation on skeletal muscle strength, mass, physical function, and hormonal and inflammatory biomarkers in healthy active older men: a randomised, double-blind, placebo-controlled trial. Exp. Gerontol. 158: 111651.
  17. Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM. 2012. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr. Metab (Lond). 9: 57.
  18. Reid-McCann RJ, Brennan SF, McKinley MC, McEvoy CT. 2022. The effect of animal versus plant protein on muscle mass, muscle strength, physical performance and sarcopenia in adults: protocol for a systematic review. Syst. Rev. 11: 64.
  19. Park Y, Choi JE, Hwang HS. 2018. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 108: 1026-1033. https://doi.org/10.1093/ajcn/nqy214
  20. Aas SN, Seynnes O, Benestad HB, Raastad T. 2020. Strength training and protein supplementation improve muscle mass, strength, and function in mobility-limited older adults: a randomized controlled trial. Aging Clin. Exp. Res. 32: 605-616. https://doi.org/10.1007/s40520-019-01234-2
  21. Nakayama K, Saito Y, Sanbongi C, Murata K, Urashima T. 2021. Effects of low-dose milk protein supplementation following low-to-moderate intensity exercise training on muscle mass in healthy older adults: a randomized placebo-controlled trial. Eur. J. Nutr. 60: 917-928. https://doi.org/10.1007/s00394-020-02302-4
  22. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. 2006. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 291: E381-387. https://doi.org/10.1152/ajpendo.00488.2005
  23. Ispoglou T, Witard OC, Duckworth LC, Lees MJ. 2021. The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: implications for skeletal muscle mass, strength and function. Proc. Nutr. Soc. 80: 230-242. https://doi.org/10.1017/S0029665120008010
  24. Ispoglou T, White H, Preston T, McElhone S, McKenna J, Hind K. 2016. Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65-75 years. Eur. J. Clin. Nutr. 70: 182-188. https://doi.org/10.1038/ejcn.2015.91
  25. Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, et al. 2020. Branched chain amino acids, aging and age-related health. Ageing Res. Rev. 64: 101198.
  26. Neinast M, Murashige D, Arany Z. 2019. Branched chain amino acids. Annu. Rev. Physiol. 81: 139-164. https://doi.org/10.1146/annurev-physiol-020518-114455
  27. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. 2004. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 134: 1583S-1587S. https://doi.org/10.1093/jn/134.6.1583S
  28. Mohta S, Anand A, Sharma S, Qamar S, Agarwal S, Gunjan D, et al. 2022. Randomised clinical trial: effect of adding branched chain amino acids to exercise and standard-of-care on muscle mass in cirrhotic patients with sarcopenia. Hepatol. Int. 16: 680-690. https://doi.org/10.1007/s12072-022-10334-7
  29. Martinez-Arnau FM, Fonfria-Vivas R, Cauli O. 2019. Beneficial effects of leucine supplementation on criteria for sarcopenia: A systematic review. Nutrients 11: 2504.
  30. Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WK, Dendale P, et al. 2009. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 89: 1468-1475. https://doi.org/10.3945/ajcn.2008.26668
  31. Leenders M, Verdijk LB, van der Hoeven L, van Kranenburg J, Hartgens F, Wodzig WK, et al. 2011. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J. Nutr. 141: 1070-1076. https://doi.org/10.3945/jn.111.138495
  32. Oktaviana J, Zanker J, Vogrin S, Duque G. 2019. The Effect of beta-hydroxy-beta-methylbutyrate (HMB) on sarcopenia and functional frailty in older persons: A systematic review. J. Nutr. Health Aging 23: 145-150. https://doi.org/10.1007/s12603-018-1153-y
  33. Lin Z, Zhao A, He J. 2022. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on the muscle strength in the elderly population: A meta-analysis. Front. Nutr. 9: 914866.
  34. Costa Riela NA, Alvim Guimaraes MM, Oliveira de Almeida D, Araujo EMQ. 2021. Effects of beta-hydroxy-beta-methylbutyrate supplementation on elderly body composition and muscle strength: A review of clinical trials. Ann. Nutr. Metab. 77: 16-22. https://doi.org/10.1159/000514236
  35. Stout JR, Smith-Ryan AE, Fukuda DH, Kendall KL, Moon JR, Hoffman JR, et al. 2013. Effect of calcium beta-hydroxy-beta-methylbutyrate (CaHMB) with and without resistance training in men and women 65+yrs: a randomized, double-blind pilot trial. Exp. Gerontol. 48: 1303-1310. https://doi.org/10.1016/j.exger.2013.08.007
  36. Ellis AC, Hunter GR, Goss AM, Gower BA. 2019. Oral Supplementation with beta-hydroxy-beta-methylbutyrate, arginine, and glutamine improves lean body mass in healthy older adults. J. Diet Suppl. 16: 281-293. https://doi.org/10.1080/19390211.2018.1454568
  37. Hsieh LC, Chow CJ, Chang WC, Liu TH, Chang CK. 2010. Effect of beta-hydroxy-beta-methylbutyrate on protein metabolism in bed-ridden elderly receiving tube feeding. Asia Pac. J. Clin. Nutr. 19: 200-208.
  38. Pereira S, Deutz N, Wolfe R. 2013. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 32: 659.
  39. Baier S, Johannsen D, Abumrad N, Rathmacher JA, Nissen S, Flakoll P. 2009. Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of beta-hydroxy-beta-methylbutyrate (HMB), L-arginine, and L-lysine. JPEN J. Parenter Enteral. Nutr. 33: 71-82. https://doi.org/10.1177/0148607108322403
  40. Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. 2019. Effectiveness of creatine supplementation on aging muscle and bone: focus on falls prevention and inflammation. J. Clin. Med. 8: 488.
  41. Cooper R, Naclerio F, Allgrove J, Jimenez A. 2012. Creatine supplementation with specific view to exercise/sports performance: an update. J. Int. Soc. Sports Nutr. 9: 33.
  42. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, et al. 2007. International society of sports nutrition position stand: creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 4: 6.
  43. Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. 2022. Creatine supplementation for older adults: focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 162: 116467.
  44. Bernat P, Candow DG, Gryzb K, Butchart S, Schoenfeld BJ, Bruno P. 2019. Effects of high-velocity resistance training and creatine supplementation in untrained healthy aging males. Appl. Physiol. Nutr. Metab. 44: 1246-1253. https://doi.org/10.1139/apnm-2019-0066
  45. Caballero-Garcia A, Pascual-Fernandez J, Noriega-Gonzalez DC, Bello HJ, Pons-Biescas A, Roche E, et al. 2021. L-citrulline supplementation and exercise in the management of sarcopenia. Nutrients 13: 3133.
  46. Bouillanne O, Melchior JC, Faure C, Paul M, Canoui-Poitrine F, Boirie Y, et al. 2019. Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: the ciproage randomized controlled trial. Clin. Nutr. 38: 564-574. https://doi.org/10.1016/j.clnu.2018.02.017
  47. Marcangeli V, Youssef L, Dulac M, Carvalho LP, Hajj-Boutros G, Reynaud O, et al. 2022. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults. J. Cachexia Sarcopenia Muscle 13: 1526-1540. https://doi.org/10.1002/jcsm.12955
  48. Valenzuela PL, Morales JS, Emanuele E, Pareja-Galeano H, Lucia A. 2019. Supplements with purported effects on muscle mass and strength. Eur. J. Nutr. 58: 2983-3008. https://doi.org/10.1007/s00394-018-1882-z
  49. Dupont J, Dedeyne L, Dalle S, Koppo K, Gielen E. 2019. The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin. Exp. Res. 31: 825-836. https://doi.org/10.1007/s40520-019-01146-1
  50. Cornish SM, Cordingley DM, Shaw KA, Forbes SC, Leonhardt T, Bristol A, et al. 2022. Effects of omega-3 supplementation alone and combined with resistance exercise on skeletal muscle in older adults: a systematic review and meta-analysis. Nutrients 14: 2221.
  51. Rodacki CL, Rodacki AL, Pereira G, Naliwaiko K, Coelho I, Pequito D, et al. 2012. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 95: 428-436. https://doi.org/10.3945/ajcn.111.021915
  52. Remelli F, Vitali A, Zurlo A, Volpato S. 2019. Vitamin D deficiency and sarcopenia in older persons. Nutrients 11: 2861.
  53. Waterhouse M, Sanguineti E, Baxter C, Duarte Romero B, McLeod DSA, English DR, et al. 2021. Vitamin D supplementation and risk of falling: outcomes from the randomized, placebo-controlled D-health trial. J. Cachexia Sarcopenia Muscle 12: 1428-1439. https://doi.org/10.1002/jcsm.12759
  54. Jabbour J, Rahme M, Mahfoud ZR, El-Hajj Fuleihan G. 2022. Effect of high dose vitamin D supplementation on indices of sarcopenia and obesity assessed by DXA among older adults: a randomized controlled trial. Endocrine 76: 162-171. https://doi.org/10.1007/s12020-021-02951-3
  55. Suebthawinkul C, Panyakhamlerd K, Yotnuengnit P, Suwan A, Chaiyasit N, Taechakraichana N. 2018. The effect of vitamin D2 supplementation on muscle strength in early postmenopausal women: a randomized, double-blind, placebo-controlled trial. Climacteric 21: 491-497. https://doi.org/10.1080/13697137.2018.1480600
  56. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL. 2011. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos. Int. 22: 859-871. https://doi.org/10.1007/s00198-010-1407-y
  57. El Hajj C, Fares S, Chardigny JM, Boirie Y, Walrand S. 2018. Vitamin D supplementation and muscle strength in pre-sarcopenic elderly Lebanese people: a randomized controlled trial. Arch. Osteoporos. 14: 4.
  58. Norton LE, Layman DK. 2006. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J. Nutr. 136: 533S-537S. https://doi.org/10.1093/jn/136.2.533S
  59. Tieland M, Brouwer-Brolsma EM, Nienaber-Rousseau C, van Loon LJ, De Groot LC. 2013. Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people. Eur. J. Clin. Nutr. 67: 1050-1055. https://doi.org/10.1038/ejcn.2013.144
  60. Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. 2015. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the provide study: a randomized, double-blind, placebocontrolled trial. J. Am. Med. Dir. Assoc. 16: 740-747. https://doi.org/10.1016/j.jamda.2015.05.021
  61. Rathor R, Agrawal A, Kumar R, Suryakumar G, Singh SN. 2021. Ursolic acid ameliorates hypobaric hypoxia-induced skeletal muscle protein loss via upregulating Akt pathway: an experimental study using rat model. IUBMB Life 73: 375-389. https://doi.org/10.1002/iub.2435
  62. Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre TL, Ramirez AJ, et al. 2016. l-leucine increases skeletal muscle IGF-1 but does not differentially increase Akt/mTORC1 signaling and serum IGF-1 compared to ursolic acid in response to resistance exercise in resistance-trained men. J. Am. Coll. Nutr. 35: 627-638. https://doi.org/10.1080/07315724.2015.1132019
  63. Lobo PCB, Vieira IP, Pichard C, Marques BS, Gentil P, da Silva EL, et al. 2021. Ursolic acid has no additional effect on muscle strength and mass in active men undergoing a high-protein diet and resistance training: A double-blind and placebo-controlled trial. Clin. Nutr. 40: 581-589. https://doi.org/10.1016/j.clnu.2020.06.004
  64. Rondanelli M, Opizzi A, Antoniello N, Boschi F, Iadarola P, Pasini E, et al. 2011. Effect of essential amino acid supplementation on quality of life, amino acid profile and strength in institutionalized elderly patients. Clin. Nutr. 30: 571-577. https://doi.org/10.1016/j.clnu.2011.04.005
  65. Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, et al. 2009. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J. Clin. Endocrinol. Metab. 94: 1630-1637. https://doi.org/10.1210/jc.2008-1564
  66. Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, et al. 2008. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am. J. Cardiol. 101: 69E-77E. https://doi.org/10.1016/j.amjcard.2008.03.004
  67. Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ. 2002. Creatine supplementation improves muscular performance in older men. Med. Sci. Sports Exerc. 34: 537-543. https://doi.org/10.1097/00005768-200203000-00023
  68. Aguiar AF, Januario RS, Junior RP, Gerage AM, Pina FL, do Nascimento MA, et al. 2013. Long-term creatine supplementation improves muscular performance during resistance training in older women. Eur. J. Appl. Physiol. 113: 987-996. https://doi.org/10.1007/s00421-012-2514-6
  69. Candow DG, Little JP, Chilibeck PD, Abeysekara S, Zello GA, Kazachkov M, et al. 2008. Low-dose creatine combined with protein during resistance training in older men. Med. Sci. Sports Exerc. 40: 1645-1652. https://doi.org/10.1249/MSS.0b013e318176b310
  70. da Cruz Alves NM, Pfrimer K, Santos PC, de Freitas EC, Neves T, Pessini RA, et al. 2022. Randomised controlled trial of fish oil supplementation on responsiveness to resistance exercise training in sarcopenic older women. Nutrients 14: 2844.
  71. Alkhedhairi SA, Aba Alkhayl FF, Ismail AD, Rozendaal A, German M, MacLean B, et al. 2022. The effect of krill oil supplementation on skeletal muscle function and size in older adults: a randomised controlled trial. Clin. Nutr. 41: 1228-1235. https://doi.org/10.1016/j.clnu.2022.04.007
  72. Logan SL, Spriet LL. 2015. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS One 10: e0144828.
  73. Perez-Guisado J, Jakeman PM. 2010. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res. 24: 1215-1222. https://doi.org/10.1519/JSC.0b013e3181cb28e0
  74. Lin CC, Shih MH, Chen CD, Yeh SL. 2021. Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: an open-label, parallel-group study. Clin. Nutr. 40: 1323-1329. https://doi.org/10.1016/j.clnu.2020.08.017
  75. Cereda E, Pisati R, Rondanelli M, Caccialanza R. 2022. Whey protein, leucine- and Vitamin-D-enriched oral nutritional supplementation for the treatment of sarcopenia. Nutrients 14: 1524.
  76. Chanet A, Verlaan S, Salles J, Giraudet C, Patrac V, Pidou V, et al. 2017. Supplementing breakfast with a Vitamin D and leucine-enriched whey protein medical nutrition drink enhances postprandial muscle protein synthesis and muscle mass in healthy older men. J. Nutr. 147: 2262-2271. https://doi.org/10.3945/jn.117.252510
  77. Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, et al. 2016. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am. J. Clin. Nutr. 103: 830-840. https://doi.org/10.3945/ajcn.115.113357
  78. Kang Y, Kim N, Choi YJ, Lee Y, Yun J, Park SJ, et al. 2020. Leucine-enriched protein supplementation increases lean body mass in healthy korean adults aged 50 years and older: a randomized, double-blind, placebo-controlled trial. Nutrients 12: 1816.
  79. Abe S, Ezaki O, Suzuki M. 2016. Medium-chain triglycerides in combination with leucine and Vitamin D increase muscle strength and function in frail elderly adults in a randomized controlled trial. J. Nutr. 146: 1017-1026. https://doi.org/10.3945/jn.115.228965
  80. Grootswagers P, Smeets E, Oteng AB, Groot L. 2021. A novel oral nutritional supplement improves gait speed and mitochondrial functioning compared to standard care in older adults with (or at risk of) undernutrition: results from a randomized controlled trial. Aging (Albany NY) 13: 9398-9418. https://doi.org/10.18632/aging.202912