Acknowledgement
This study was supported by the Korean Society of Ginseng (2021) and the Ministry of Health and Welfare, Republic of Korea (grant no. HI22C0537).
References
- Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, et al. 2021. Effect of Korean Red Ginseng on metabolic syndrome. J. Ginseng Res. 45: 380-389. https://doi.org/10.1016/j.jgr.2020.11.002
- Xia JX, Ma SJ, Zhu X, Chen C, Zhang R, Cao ZL, et al. 2022. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci. Adv. 8: eabj1262.
- Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, et al. 2019. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J. Ginseng Res. 43: 431-441. https://doi.org/10.1016/j.jgr.2018.07.003
- Nam JJ, Min JE, Son MH, Oh JH, Kang S. 2017. Ultraviolet- and infrared-induced 11 beta-hydroxysteroid dehydrogenase type 1 activating skin photoaging is inhibited by red ginseng extract containing high concentration of ginsenoside Rg3(S). Photodermatol. Photo. 33: 311-320. https://doi.org/10.1111/phpp.12337
- Yang J, Song J, Kim SJ, You G, Lee JB, Mok H. 2022. Chronic infrared-A irradiation-induced photoaging of human dermal fibroblasts from different donors at physiological temperature. Photodermatol. Photoimmunol. Photomed. 38: 571-581. https://doi.org/10.1111/phpp.12793
- Yu H, Teng LR, Meng QF, Li YH, Sun XC, Lu JH, et al. 2013. Development of liposomal ginsenoside Rg3: Formulation optimization and evaluation of its anticancer effects. Int. J. Pharmaceut. 450: 250-258. https://doi.org/10.1016/j.ijpharm.2013.04.065
- Li L, Ni JY, Li M, Chen JR, Han LF, Zhu Y, et al. 2017. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy. Drug Deliv. 24: 1617-1630. https://doi.org/10.1080/10717544.2017.1391893
- Ren ZG, Chen XM, Hong LJ, Zhao XX, Cui GY, Li A, et al. 2020. Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis. Small 16: e1905233.
- Cao LQ, Wang S, Zhang LM, Li JN. 2022. mPEG-b-P(Glu-co-Phe) nanoparticles increase gastric retention time and gastric ulcer treatment efficacy of 20(S)-ginsenoside Rg3. Biomed. Pharmacother. 146: 112608.
- Li L, Wang Y, Guo R, Li S, Ni JY, Gao S, et al. 2020. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J. Control. Release 317: 259-272. https://doi.org/10.1016/j.jconrel.2019.11.032
- Robert C, Couedelo L, Vaysse C, Michalski MC. 2020. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie 169: 121-132. https://doi.org/10.1016/j.biochi.2019.11.017
- van Hoogevest P, Wendel A. 2014. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 116: 1088-1107. https://doi.org/10.1002/ejlt.201400219
- Lee MS, Lee JW, Kim SJ, Pham-Nguyen OV, Park J, Park JH, et al. 2021. Comparison study of the effects of cationic liposomes on delivery across 3D skin tissue and whitening effects in pigmented 3D skin. Macromol. Biosci. 21: e2000413.
- Kim H, Kim SY, Sim GY, Ahn JH. 2020. Synthesis of 4-hydroxybenzoic acid derivatives in Escherichia coli. J. Agric. Food Chem. 68: 9743-9749. https://doi.org/10.1021/acs.jafc.0c03149
- Kim JY, Kim SJ, You G, Choi ES, Lee JH, Mok H, et al. 2021. Protective effects of titanium dioxide-based emulsion after short-term and long-term infrared-A ray irradiation on skin cells. Biotechnol. Bioproc. E. 26: 595-605. https://doi.org/10.1007/s12257-020-0308-y
- Yang KE, Jang HJ, Hwang IH, Hong EM, Lee MG, Lee S, et al. 2020. Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-sirtuin signaling. J. Ginseng Res. 44: 341-349. https://doi.org/10.1016/j.jgr.2019.08.002
- Lim CJ, Choi WY, Jung HJ. 2014. Stereoselectiye skin anti-photoaging properties of ginsenoside Rg3 in UV-B-irradiated keratinocytes. Biol. Pharm. Bull. 37: 1583-1590. https://doi.org/10.1248/bpb.b14-00167
- W. Piyasirananda AB, A. Ganesan, S. Bidula, L. Stokes. 2021. Insights into the structure-activity relationship of glycosides as positive allosteric modulators acting on P2X7 receptors. Mol. Pharmacol. 99: 163-174. https://doi.org/10.1124/molpharm.120.000129
- van Hoogevest P, Wendel A. 2014. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 116: 1088-1107. https://doi.org/10.1002/ejlt.201400219
- Li Y, Xu F, Li X, Chen SY, Huang LY, Bian YY, et al. 2021. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability. Int. J. Pharm. 592: 119936.
- Wan HD, Li D. 2015. Highly efficient biotransformation of ginsenoside Rb1 and Rg3 using beta-galactosidase from Aspergillus sp. Rsc. Adv. 5: 78874-78879. https://doi.org/10.1039/C5RA11519A
- Doppalapudi S, Jain A, Chopra DK, Khan W. 2017. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci. 96: 515-529. https://doi.org/10.1016/j.ejps.2016.10.025
- Li J, Hu M, Xu H, Yu X, Ye F, Wang K, et al. 2016. Influence of type and proportion of lyoprotectants on lyophilized ginsenoside Rg3 liposomes. J. Pharm. Pharmacol. 68: 1-13. https://doi.org/10.1111/jphp.12489
- Maione-Silva L, de Castro EG, Nascimento TL, Cintra ER, Moreira LC, Cintra BAS, et al. 2019. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Sci. Rep. 9: 522.
- Hua S. 2015. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol. 6: 219.
- Zhu Y, Liang JM, Gao CF, Wang AN, Xia JX, Hong C, et al. 2021. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release 330: 641-657. https://doi.org/10.1016/j.jconrel.2020.12.036
- Lu YY, Wu CH, Hong CH, Chang KL, Lee CH. 2021. GLUT-1 enhances glycolysis, oxidative stress, and fibroblast proliferation in keloid. Life (Basel) 11: 505.
- Logue SE, Elgendy M, Martin SJ. 2009. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat. Protoc. 4: 1383-1395. https://doi.org/10.1038/nprot.2009.143