Acknowledgement
This work was supported by grants (20161MFDS030 and 21162MFDS027) from the Ministry of Food and Drug Safety, South Korea.
References
- Zhang Y, Simpson RB, Sallade LE, Sanchez E, Monahan KM, Naumova EN. 2022. Evaluating completeness of foodborne outbreak reporting in the United States, 1998-2019. Int. J. Environ. Res. Public Health 19: 2898.
- Zamanpour S, Afshari A, Shakeri G. 2022. Epidemiological Evaluation of water-and foodborne outbreaks in the United States and Europe. JNFH 10: 179-194.
- Kim S-O, Kim S-S. 2021. Recent (2011-2017) foodborne outbreak cases in the Republic of Korea compared to the United States: a review. Food Sci. Biotechnol. 30: 185-194. https://doi.org/10.1007/s10068-020-00864-x
- Bolton F. 1998. Strategies in the development of media for the detection of food-borne pathogens. Int. J. Food Microbiol. 45: 29-34. https://doi.org/10.1016/S0168-1605(98)00144-5
- Darkoh C, Chappell C, Gonzales C, Okhuysen P. 2015. A rapid and specific method for the detection of indole in complex biological samples. Appl. Environ. Microbiol. 81: 8093-8097. https://doi.org/10.1128/AEM.02787-15
- Jackson M, Bird A, McOrist A. 2002. Comparison of two selective media for the detection and enumeration of Lactobacilli in human faeces. J. Microbiol. Methods 51: 313-321. https://doi.org/10.1016/S0167-7012(02)00102-1
- Saravanan A, Kumar PS, Hemavathy R, Jeevanantham S, Kamalesh R, Sneha S, et al. 2021. Methods of detection of food-borne pathogens: a review. Environ. Chem. Lett. 19: 189-207. https://doi.org/10.1007/s10311-020-01072-z
- Valimaa A-L, Tilsala-Timisjarvi A, Virtanen E. 2015. Rapid detection and identification methods for Listeria monocytogenes in the food chain-a review. Food Control 55: 103-114. https://doi.org/10.1016/j.foodcont.2015.02.037
- Hahn MA, Keng PC, Krauss TD. 2008. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Anal. Chem. 80: 864-872. https://doi.org/10.1021/ac7018365
- Hernandez R, Valles C, Benito AM, Maser WK, Rius FX, Riu J. 2014. Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens. Bioelectron. 54: 553-557. https://doi.org/10.1016/j.bios.2013.11.053
- Ye Y, Guo H, Sun X. 2019. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens. Bioelectron. 126: 389-404. https://doi.org/10.1016/j.bios.2018.10.039
- Priyanka B, Patil RK, Dwarakanath S. 2016. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 144: 327.
- Lee C, Kim J, Shin SG, Hwang S. 2006. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273-280. https://doi.org/10.1016/j.jbiotec.2005.11.014
- Baric S, Kerschbamer C, Via JD. 2006. TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Mol. Biol. Rep. 24: 169-184. https://doi.org/10.1007/BF02914056
- Umesha S, Manukumar H. 2018. Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit. Rev. Food Sci. Nutr. 58: 84-104. https://doi.org/10.1080/10408398.2015.1126701
- Takahashi H, Saito R, Miya S, Tanaka Y, Miyamura N, Kuda T, et al. 2017. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae. Int. J. Food Microbiol. 246: 92-97. https://doi.org/10.1016/j.ijfoodmicro.2016.12.015
- Gaffoor I, Trail F. 2006. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 72: 1793-1799. https://doi.org/10.1128/AEM.72.3.1793-1799.2006
- Yang Y-W, Chen M-K, Yang B-Y, Huang X-J, Zhang X-R, He L-Q, et al. 2015. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl. Environ. Microbiol. 81: 6749-6756. https://doi.org/10.1128/AEM.01906-15
- Mayer Z, Bagnara A, Farber P, Geisen R. 2003. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int. J. Food Microbiol. 82: 143-151. https://doi.org/10.1016/S0168-1605(02)00250-7
- Yu Q, Zhai L, Bie X, Lu Z, Zhang C, Tao T, et al. 2016. Survey of five food-borne pathogens in commercial cold food dishes and their detection by multiplex PCR. Food Control 59: 862-869. https://doi.org/10.1016/j.foodcont.2015.06.027
- Lee SH, Jung BY, Rayamahji N, Lee HS, Jeon WJ, Choi KS, et al. 2009. A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats. J. Vet. Sci. 10: 43-51. https://doi.org/10.4142/jvs.2009.10.1.43
- Liang T, Zhou P, Zhou B, Xu Q, Zhou Z, Wu X, et al. 2019. Simultaneous quantitative detection of viable Escherichia coli O157: H7, Cronobacter spp., and Salmonella spp. using sodium deoxycholate-propidium monoazide with multiplex real-time PCR. J. Dairy Sci. 102: 2954-2965. https://doi.org/10.3168/jds.2018-15736
- Behjati S, Tarpey PS. 2013. What is next generation sequencing? Arch. Dis. Child Educ. Pract. 98: 236-238. https://doi.org/10.1136/archdischild-2013-304340
- Meera Krishna B, Khan MA, Khan ST. 2019. Next-generation sequencing (NGS) platforms: an exciting era of genome sequence analysis, pp. 89-109. In Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M (Eds.) Microbial Genomics in Sustainable Agroecosystems, 1st Ed. Springer, Singapore.
- Hert DG, Fredlake CP, Barron AE. 2008. Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29: 4618-4626. https://doi.org/10.1002/elps.200800456
- Stockton JD, Nieto T, Wroe E, Poles A, Inston N, Briggs D, et al. 2020. Rapid, highly accurate and cost-effective open-source simultaneous complete HLA typing and phasing of class I and II alleles using nanopore sequencing. HLA 96: 163-178. https://doi.org/10.1111/tan.13926
- Chung HY, Kim Y-T, Kwon J-G, Im HH, Ko D, Lee J-H, et al. 2021. Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak. Food Microbiol. 93: 103602.
- Liu X, Liu G, Wu Y, Pang X, Wu Y, Niu J, et al. 2021. Transposon sequencing: a powerful tool for the functional genomic study of foodborne pathogens. Trends Food Sci. Technol. 118: 679-687. https://doi.org/10.1016/j.tifs.2021.06.032
- Gu W, Miller S, Chiu CY. 2019. Clinical metagenomic next-generation sequencing for pathogen detection. Annu. Rev. Pathol. 14: 319.
- An M, Liu Y, Zhang M, Hu K, Jin Y, Xu S, et al. 2021. Targeted next-generation sequencing panel screening of 668 Chinese patients with non-obstructive azoospermia. J. Assist. Reprod. Genet. 38: 1997-2005. https://doi.org/10.1007/s10815-021-02154-9
- Qiu L, Feng H, Yu H, Li M, You Y, Zhu S, et al. 2022. Characterization of the genomic landscape in cervical cancer by next generation sequencing. Genes 13: 287.
- Fraiture M-A, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH. 2015. Current and new approaches in GMO detection: challenges and solutions. Biomed Res. Int. 2015: 392872.
- Anis E, Hawkins IK, Ilha MR, Woldemeskel MW, Saliki JT, Wilkes RP. 2018. Evaluation of targeted next-generation sequencing for detection of bovine pathogens in clinical samples. J. Clin. Microbiol. 56: e00399-00318.
- Bridier A. 2019. Exploring foodborne pathogen ecology and antimicrobial resistance in the light of shotgun Metagenomics, pp. 229-245. In Bridier A (ed.), Foodborne Bacterial Pathogens, 1st Ed. Humana New York, NY.
- Lewis E, Hudson J, Cook N, Barnes J, Haynes E. 2020. Next-generation sequencing as a screening tool for foodborne pathogens in fresh produce. J. Microbiol. Methods 171: 105840.
- Frey KG, Bishop-Lilly KA. 2015. Next-generation sequencing for pathogen detection and identification, pp. 525-554. Methods Microbiol., Ed. Elsevier.
- Ferrario C, Lugli GA, Ossiprandi MC, Turroni F, Milani C, Duranti S, et al. 2017. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. Int. J. Food Microbiol. 256: 20-29. https://doi.org/10.1016/j.ijfoodmicro.2017.05.001
- Chiu CY, Miller SA. 2019. Clinical metagenomics. Nat. Rev. Genet. 20: 341-355. https://doi.org/10.1038/s41576-019-0113-7
- Chen Y-L, Lee C-C, Lin Y-L, Yin K-M, Ho C-L, Liu T. 2015. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics 16: S13.
- Muller D, Greune L, Heusipp G, Karch H, Fruth A, Tschape H, et al. 2007. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl. Environ. Microbiol. 73: 3380-3390. https://doi.org/10.1128/AEM.02855-06
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13: e1005595.
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
- Liu B, Zheng D, Zhou S, Chen L, Yang J. 2022. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 50: D912-D917. https://doi.org/10.1093/nar/gkab1107
- Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ. 3: e1319.
- Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40: e115.
- Lorenz TC. 2012. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 22: e3998.
- Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13: 31.
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
- De Buyser M-L, Dufour B, Maire M, Lafarge V. 2001. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int. J. Food Microbiol. 67: 1-17. https://doi.org/10.1016/S0168-1605(01)00443-3
- Oh S-Y, Nam K-W, Yoon D-H. 2017. Analysis of pathogenic microorganism's contamination and heavy metals on kimchi cabbage by cultivation methods in Korea. J. Food Hyg. Saf. 32: 500-506. https://doi.org/10.13103/JFHS.2017.32.6.500
- Lee J-H, Ha J-H, Lee H-W, Lee JY, Hwang Y-S, Lee HM, et al. 2018. Analysis of microbiological contamination in kimchi and its ingredients. J. Food Hyg. Saf. 33: 94-101. https://doi.org/10.13103/JFHS.2018.33.2.94
- Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. 2013. The complex microbiota of raw milk. FEMS Microbiol. Rev. 37: 664-698. https://doi.org/10.1111/1574-6976.12030
- Verhoef L, Vennema H, Van Pelt W, Lees D, Boshuizen H, Henshilwood K, et al. 2010. Use of norovirus genotype profiles to differentiate origins of foodborne outbreaks. Emerg. Infect. Dis. 16: 617-624. https://doi.org/10.3201/eid1604.090723
- Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5: 770.
- Butz H, Patocs A. 2019. Brief summary of the most important molecular genetic methods (PCR, qPCR, microarray, next-generation sequencing, etc.), pp. 33-52. In Igaz P, Patocs A (eds.), Genetics of Endocrine Diseases and Syndromes. 1st Ed. Springer Cham, Switzerland.
- Minogue TD, Koehler JW, Stefan CP, Conrad TA. 2019. Next-generation sequencing for biodefense: biothreat detection, forensics, and the clinic. Clin. Chem. 65: 383-392. https://doi.org/10.1373/clinchem.2016.266536
- Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16: 114.