DOI QR코드

DOI QR Code

Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods

  • Dong-Geun Park (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University) ;
  • Eun-Su Ha (Research and Development Center, Sanigen Co., Ltd) ;
  • Byungcheol Kang (Research and Development Center, Sanigen Co., Ltd) ;
  • Iseul Choi (Research and Development Center, Sanigen Co., Ltd) ;
  • Jeong-Eun Kwak (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University) ;
  • Jinho Choi (Research and Development Center, Sanigen Co., Ltd) ;
  • Jeongwoong Park (Research and Development Center, Sanigen Co., Ltd) ;
  • Woojung Lee (Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Seung Hwan Kim (Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Soon Han Kim (Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Ju-Hoon Lee (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University)
  • Received : 2022.11.07
  • Accepted : 2022.11.10
  • Published : 2023.01.28

Abstract

These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.

Keywords

Acknowledgement

This work was supported by grants (20161MFDS030 and 21162MFDS027) from the Ministry of Food and Drug Safety, South Korea.

References

  1. Zhang Y, Simpson RB, Sallade LE, Sanchez E, Monahan KM, Naumova EN. 2022. Evaluating completeness of foodborne outbreak reporting in the United States, 1998-2019. Int. J. Environ. Res. Public Health 19: 2898.
  2. Zamanpour S, Afshari A, Shakeri G. 2022. Epidemiological Evaluation of water-and foodborne outbreaks in the United States and Europe. JNFH 10: 179-194.
  3. Kim S-O, Kim S-S. 2021. Recent (2011-2017) foodborne outbreak cases in the Republic of Korea compared to the United States: a review. Food Sci. Biotechnol. 30: 185-194. https://doi.org/10.1007/s10068-020-00864-x
  4. Bolton F. 1998. Strategies in the development of media for the detection of food-borne pathogens. Int. J. Food Microbiol. 45: 29-34. https://doi.org/10.1016/S0168-1605(98)00144-5
  5. Darkoh C, Chappell C, Gonzales C, Okhuysen P. 2015. A rapid and specific method for the detection of indole in complex biological samples. Appl. Environ. Microbiol. 81: 8093-8097. https://doi.org/10.1128/AEM.02787-15
  6. Jackson M, Bird A, McOrist A. 2002. Comparison of two selective media for the detection and enumeration of Lactobacilli in human faeces. J. Microbiol. Methods 51: 313-321. https://doi.org/10.1016/S0167-7012(02)00102-1
  7. Saravanan A, Kumar PS, Hemavathy R, Jeevanantham S, Kamalesh R, Sneha S, et al. 2021. Methods of detection of food-borne pathogens: a review. Environ. Chem. Lett. 19: 189-207. https://doi.org/10.1007/s10311-020-01072-z
  8. Valimaa A-L, Tilsala-Timisjarvi A, Virtanen E. 2015. Rapid detection and identification methods for Listeria monocytogenes in the food chain-a review. Food Control 55: 103-114. https://doi.org/10.1016/j.foodcont.2015.02.037
  9. Hahn MA, Keng PC, Krauss TD. 2008. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Anal. Chem. 80: 864-872. https://doi.org/10.1021/ac7018365
  10. Hernandez R, Valles C, Benito AM, Maser WK, Rius FX, Riu J. 2014. Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens. Bioelectron. 54: 553-557. https://doi.org/10.1016/j.bios.2013.11.053
  11. Ye Y, Guo H, Sun X. 2019. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens. Bioelectron. 126: 389-404. https://doi.org/10.1016/j.bios.2018.10.039
  12. Priyanka B, Patil RK, Dwarakanath S. 2016. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 144: 327.
  13. Lee C, Kim J, Shin SG, Hwang S. 2006. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273-280. https://doi.org/10.1016/j.jbiotec.2005.11.014
  14. Baric S, Kerschbamer C, Via JD. 2006. TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Mol. Biol. Rep. 24: 169-184. https://doi.org/10.1007/BF02914056
  15. Umesha S, Manukumar H. 2018. Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit. Rev. Food Sci. Nutr. 58: 84-104. https://doi.org/10.1080/10408398.2015.1126701
  16. Takahashi H, Saito R, Miya S, Tanaka Y, Miyamura N, Kuda T, et al. 2017. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae. Int. J. Food Microbiol. 246: 92-97. https://doi.org/10.1016/j.ijfoodmicro.2016.12.015
  17. Gaffoor I, Trail F. 2006. Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl. Environ. Microbiol. 72: 1793-1799. https://doi.org/10.1128/AEM.72.3.1793-1799.2006
  18. Yang Y-W, Chen M-K, Yang B-Y, Huang X-J, Zhang X-R, He L-Q, et al. 2015. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl. Environ. Microbiol. 81: 6749-6756. https://doi.org/10.1128/AEM.01906-15
  19. Mayer Z, Bagnara A, Farber P, Geisen R. 2003. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int. J. Food Microbiol. 82: 143-151. https://doi.org/10.1016/S0168-1605(02)00250-7
  20. Yu Q, Zhai L, Bie X, Lu Z, Zhang C, Tao T, et al. 2016. Survey of five food-borne pathogens in commercial cold food dishes and their detection by multiplex PCR. Food Control 59: 862-869. https://doi.org/10.1016/j.foodcont.2015.06.027
  21. Lee SH, Jung BY, Rayamahji N, Lee HS, Jeon WJ, Choi KS, et al. 2009. A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats. J. Vet. Sci. 10: 43-51. https://doi.org/10.4142/jvs.2009.10.1.43
  22. Liang T, Zhou P, Zhou B, Xu Q, Zhou Z, Wu X, et al. 2019. Simultaneous quantitative detection of viable Escherichia coli O157: H7, Cronobacter spp., and Salmonella spp. using sodium deoxycholate-propidium monoazide with multiplex real-time PCR. J. Dairy Sci. 102: 2954-2965. https://doi.org/10.3168/jds.2018-15736
  23. Behjati S, Tarpey PS. 2013. What is next generation sequencing? Arch. Dis. Child Educ. Pract. 98: 236-238. https://doi.org/10.1136/archdischild-2013-304340
  24. Meera Krishna B, Khan MA, Khan ST. 2019. Next-generation sequencing (NGS) platforms: an exciting era of genome sequence analysis, pp. 89-109. In Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M (Eds.) Microbial Genomics in Sustainable Agroecosystems, 1st Ed. Springer, Singapore.
  25. Hert DG, Fredlake CP, Barron AE. 2008. Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29: 4618-4626. https://doi.org/10.1002/elps.200800456
  26. Stockton JD, Nieto T, Wroe E, Poles A, Inston N, Briggs D, et al. 2020. Rapid, highly accurate and cost-effective open-source simultaneous complete HLA typing and phasing of class I and II alleles using nanopore sequencing. HLA 96: 163-178. https://doi.org/10.1111/tan.13926
  27. Chung HY, Kim Y-T, Kwon J-G, Im HH, Ko D, Lee J-H, et al. 2021. Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak. Food Microbiol. 93: 103602.
  28. Liu X, Liu G, Wu Y, Pang X, Wu Y, Niu J, et al. 2021. Transposon sequencing: a powerful tool for the functional genomic study of foodborne pathogens. Trends Food Sci. Technol. 118: 679-687. https://doi.org/10.1016/j.tifs.2021.06.032
  29. Gu W, Miller S, Chiu CY. 2019. Clinical metagenomic next-generation sequencing for pathogen detection. Annu. Rev. Pathol. 14: 319.
  30. An M, Liu Y, Zhang M, Hu K, Jin Y, Xu S, et al. 2021. Targeted next-generation sequencing panel screening of 668 Chinese patients with non-obstructive azoospermia. J. Assist. Reprod. Genet. 38: 1997-2005. https://doi.org/10.1007/s10815-021-02154-9
  31. Qiu L, Feng H, Yu H, Li M, You Y, Zhu S, et al. 2022. Characterization of the genomic landscape in cervical cancer by next generation sequencing. Genes 13: 287.
  32. Fraiture M-A, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH. 2015. Current and new approaches in GMO detection: challenges and solutions. Biomed Res. Int. 2015: 392872.
  33. Anis E, Hawkins IK, Ilha MR, Woldemeskel MW, Saliki JT, Wilkes RP. 2018. Evaluation of targeted next-generation sequencing for detection of bovine pathogens in clinical samples. J. Clin. Microbiol. 56: e00399-00318.
  34. Bridier A. 2019. Exploring foodborne pathogen ecology and antimicrobial resistance in the light of shotgun Metagenomics, pp. 229-245. In Bridier A (ed.), Foodborne Bacterial Pathogens, 1st Ed. Humana New York, NY.
  35. Lewis E, Hudson J, Cook N, Barnes J, Haynes E. 2020. Next-generation sequencing as a screening tool for foodborne pathogens in fresh produce. J. Microbiol. Methods 171: 105840.
  36. Frey KG, Bishop-Lilly KA. 2015. Next-generation sequencing for pathogen detection and identification, pp. 525-554. Methods Microbiol., Ed. Elsevier.
  37. Ferrario C, Lugli GA, Ossiprandi MC, Turroni F, Milani C, Duranti S, et al. 2017. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. Int. J. Food Microbiol. 256: 20-29. https://doi.org/10.1016/j.ijfoodmicro.2017.05.001
  38. Chiu CY, Miller SA. 2019. Clinical metagenomics. Nat. Rev. Genet. 20: 341-355. https://doi.org/10.1038/s41576-019-0113-7
  39. Chen Y-L, Lee C-C, Lin Y-L, Yin K-M, Ho C-L, Liu T. 2015. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics 16: S13.
  40. Muller D, Greune L, Heusipp G, Karch H, Fruth A, Tschape H, et al. 2007. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl. Environ. Microbiol. 73: 3380-3390. https://doi.org/10.1128/AEM.02855-06
  41. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  42. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13: e1005595.
  43. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  44. Liu B, Zheng D, Zhou S, Chen L, Yang J. 2022. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 50: D912-D917. https://doi.org/10.1093/nar/gkab1107
  45. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ. 3: e1319.
  46. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40: e115.
  47. Lorenz TC. 2012. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 22: e3998.
  48. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13: 31.
  49. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
  50. De Buyser M-L, Dufour B, Maire M, Lafarge V. 2001. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int. J. Food Microbiol. 67: 1-17. https://doi.org/10.1016/S0168-1605(01)00443-3
  51. Oh S-Y, Nam K-W, Yoon D-H. 2017. Analysis of pathogenic microorganism's contamination and heavy metals on kimchi cabbage by cultivation methods in Korea. J. Food Hyg. Saf. 32: 500-506. https://doi.org/10.13103/JFHS.2017.32.6.500
  52. Lee J-H, Ha J-H, Lee H-W, Lee JY, Hwang Y-S, Lee HM, et al. 2018. Analysis of microbiological contamination in kimchi and its ingredients. J. Food Hyg. Saf. 33: 94-101. https://doi.org/10.13103/JFHS.2018.33.2.94
  53. Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. 2013. The complex microbiota of raw milk. FEMS Microbiol. Rev. 37: 664-698. https://doi.org/10.1111/1574-6976.12030
  54. Verhoef L, Vennema H, Van Pelt W, Lees D, Boshuizen H, Henshilwood K, et al. 2010. Use of norovirus genotype profiles to differentiate origins of foodborne outbreaks. Emerg. Infect. Dis. 16: 617-624. https://doi.org/10.3201/eid1604.090723
  55. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5: 770.
  56. Butz H, Patocs A. 2019. Brief summary of the most important molecular genetic methods (PCR, qPCR, microarray, next-generation sequencing, etc.), pp. 33-52. In Igaz P, Patocs A (eds.), Genetics of Endocrine Diseases and Syndromes. 1st Ed. Springer Cham, Switzerland.
  57. Minogue TD, Koehler JW, Stefan CP, Conrad TA. 2019. Next-generation sequencing for biodefense: biothreat detection, forensics, and the clinic. Clin. Chem. 65: 383-392. https://doi.org/10.1373/clinchem.2016.266536
  58. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16: 114.