DOI QR코드

DOI QR Code

인공접종을 통한 국내 야생 장미과 식물의 화상병 감수성 검정

Determination of Fire Blight Susceptibility on Wild Rosaceae Plants in Korea by Artificial Inoculation

  • 박인웅 (서울대학교 식물면역연구센터) ;
  • 송유림 (경희대학교 원예생명공학과) ;
  • 오엄지 (경희대학교 그린바이오과학원) ;
  • 김요엘 (경희대학교 그린바이오과학원) ;
  • 황인선 (경희대학교 원예생명공학과) ;
  • 전미진 (국립생물자원관 미생물자원과) ;
  • 안초롱 (국립생물자원관 미생물자원과) ;
  • 김진숙 (한반도식물다양성연구소) ;
  • 김순옥 (국립생물자원관 미생물자원과) ;
  • 오창식 (서울대학교 식물면역연구센터)
  • In Woong Park (Plant Immunity Research Center, Seoul National University) ;
  • Yu-Rim Song (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Eom-Ji Oh (Graduate School of Green-Bio Science, Kyung Hee University) ;
  • Yoel Kim (Graduate School of Green-Bio Science, Kyung Hee University) ;
  • In Sun Hwang (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Mi-Jin Jeon (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Chorong Ahn (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Jin-Suk Kim (Korean Plant Diversity Institute) ;
  • Soonok Kim (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Chang-Sik Oh (Plant Immunity Research Center, Seoul National University)
  • 투고 : 2022.12.23
  • 심사 : 2022.12.28
  • 발행 : 2023.03.31

초록

Erwinia amylovora에 의해 발생하는 화상병은 2015년 국내에서 처음 보고된 이후 전국적으로 확산되고 있다. 화상병은 벌과 같은 화분매개충, 강한 바람을 동반한 강수와 이병주 전정 작업에 의한 전파 등 많은 경로를 통해 병원균 감염이 진행되어 발생한다. 이 외에도 자생하는 개야광나무속, 산사나무속, 피라칸다속, 벚나무속, 마가목속 등의 장미과 식물이 E. amylovora의 기주식물과 전파원이 될 수 있음이 보고되어 있다. 그러나, 국내에서는 아직까지 자생하고 있는 장미과 식물의 화상병 감수성에 관한 연구가 많이 다뤄지지 않은 상황이다. 본 연구에서는 2020년부터 2022년까지 3년간 국내에서 채집한 야생 장미과 식물 10속 25종을 대상으로 화상병 감수성 검정을 진행하였다. 108 cfu/ml 농도의 E. amylovora 균액을 이용하여 채집한 식물의 꽃, 잎과 가지, 과실에 접종하고, 화상병 유사 병징 발현을 관찰하고 PCR을 통해 접종 조직 내의 E. amylovora 검출 여부를 분석하였다. 그 결과, 병징 발현과 병원균 검출 결과가 동일한 14종의 야생 장미과 식물을 확인하였다. 이러한 결과는 향후 적절한 화상병 방제 정책 수립에 기여할 수 있을 것으로 생각된다.

The fire blight caused by Erwinia amylovora (Ea) is a devastating disease of Rosaceae plants, including commercially important apple and pear trees. Since the first report in Korea in May 2015, it has been spreading to neighboring regions gradually. Host plants can be infected by pollinators like bees, rainfall accompanied by wind, and cultural practices such as pruning. Many studies have revealed that wild Rosaceae plants such as Cotoneaster spp., Crataegus spp., Pyracantha spp., Prunus spp., and Sorbus spp. can be reservoirs of Ea in nature. However, wild Rosaceae plants in Korea have not been examined yet whether they are susceptible to fire blight. Therefore, the susceptibility to fire blight was examined with 25 species in 10 genera of wild Rosaceae plants, which were collected during 2020-2022, by artificial inoculation. Bacterial suspension (108 cfu/ml) of Ea type strain TS3128 was inoculated artificially in flowers, leaves, stems, and fruits of each plant species, and development of disease symptoms were monitored. Moreover, the presence of Ea bacteria from inoculated samples were checked by conventional polymerase chain reaction. Total 14 species of wild Rosaceae plants showed disease symptoms of fire blight, and Ea bacteria were detected inside of inoculated plant parts. These results suggest that wild Rosaceae plants growing nearby commercial apple and pear orchards in Korea can be Ea reservoirs, and thus they should be monitored regularly to minimize the damage by Ea infection and spreading.

키워드

과제정보

This research was supported by the National Institute of Biological Resources, Ministry of Environment of Republic of Korea (NIBR202112101, NIBR202213101) and Bio & Medical Technology Development Program of the National Research Foundation (NRF) (No. 2021M3A9I5021437).

참고문헌

  1. Balaz, J., Grahovac, M., Radunovic, D., Ilicic, R. and Krstic, M. 2013. The status of Erwinia amylovora in the former Yugoslav Republics over the past two decades. Pestic. Phytomed. 28: 9-22. https://doi.org/10.2298/PIF1301009B
  2. Balaz, J. and Smiljanic, A. 2004. Chaenomeles japonica and Cotoneaster horizontalis new hosts of Erwinia amylovora in Serbia. Zast. Bilja 55: 87-96.
  3. Bastas, K. K. and Ozturk, A. Y. 2013. First report of fire blight caused by Erwinia amylovora on crabapple (Malus floribunda) in Turkey. Plant Dis. 97: 1244.
  4. Bell, A. C., Ranney, T. G., Eaker, T. A. and Sutton, T. B. 2004. Resistance to fire blight among flowering pears and quince. HortScience 40: 413-415. https://doi.org/10.21273/HORTSCI.40.2.413
  5. Bell, R. L. and Itai, A. 2011. Pyrus. In: Wild Crop Relatives: Genomic and Breeding Resources. Temperate Fruits, ed. by C. Kole, pp. 147-177. Springer, Berlin, Germany.
  6. Bokszczanin, K. L., Przybyla, A. A., Schollenberger, M., Gozdowski, D., Madry, W. and Odziemkowski, S. 2012. Inheritance of fire blight resistance in Asian Pyrus species. Open J. Genet. 2: 109-120. https://doi.org/10.4236/ojgen.2012.22016
  7. Broggini, G. A. L., Wohner, T., Fahrentrapp, J., Kost, T. D., Flachowsky, H., Peil, A. et al. 2014. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnol. J. 12: 728-733. https://doi.org/10.1111/pbi.12177
  8. Cabrefiga Olamendi, J. 2004. Fire blight (Erwinia amylovora) of rosaceous plants. Pathogen virulence and selection and characterization of biological control agents. Ph.D. thesis. Universitat de Girona, Girona, Spain. 287 pp.
  9. Chang, C.-S. and Gil, H. Y. 2014. Sorbus ulleungensis, a new endemic species on Ulleung Island, Korea. Harv. Pap. Bot. 19: 247-255. https://doi.org/10.3100/hpib.v19iss2.2014.n11
  10. Chang, K.-S., Chang, C.-S., Park, T. Y. and Roh, M. S. 2007. Reconsideration of the Prunus serrulata complex (Rosaceae) and related taxa in eastern Asia. Bot. J. Linn. Soc. 154: 35-54. https://doi.org/10.1111/j.1095-8339.2007.00631.x
  11. Chari, L. D., Martin, G. D., Steenhuisen, S.-L., Adams, L. D. and Clark, V. R. 2020. Biology of invasive plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Sci. Manag. 13: 120-142. https://doi.org/10.1017/inp.2020.24
  12. Choi, H. J., Kim, Y. J. and Park, D. H. 2022. Extended longevity of Erwinia amylovora vectored by honeybees under in vitro conditions and its capacity for dissemination. Plant Pathol. 71: 762-771. https://doi.org/10.1111/ppa.13489
  13. Culley, T. M. and Hardiman, N. A. 2007. The beginning of a new invasive plant: a history of the ornamental Callery pear in the United States. BioScience 57: 956-964. https://doi.org/10.1641/B571108
  14. Dolan, A., MacFarlane, S. and Jennings, S. N. 2018. Pathogens in raspberry and other Rubus spp. In: Raspberry: Breeding, Challenges and Advances, eds. by J. Graham and R. Brennan, pp. 41-61. Springer Nature Switzerland, Cham, Switzerland.
  15. Dougherty, L., Wallis, A., Cox, K., Zhong, G.-Y. and Gutierrez, B. 2021. Phenotypic evaluation of fire blight outbreak in the USDA Malus collection. Agronomy 11: 144.
  16. Finn, C. E. and Clark, J. R. 2012. Blackberry. In: Fruit Breeding, eds. by M. L. Badenes and D. H. Byrne, pp. 151-190. Springer, New York, NY, USA.
  17. GBIF Secretariat. 2022. GBIF Backbone Taxonomy. Checklist dataset. URL https://doi.org/10.15468/39omei [24 February 2023].
  18. Gil, H.-Y. and Kim, S.-C. 2018. The plastome sequence of Ulleung Rowan, Sorbus ulleungensis (Rosaceae), a new endemic species on Ulleung Island, Korea. Mitochondrial DNA B Resour. 3: 284-285. https://doi.org/10.1080/23802359.2018.1443042
  19. Gusberti, M., Klemm, U., Meier, M. S., Maurhofer, M. and Hunger-Glaser, I. 2015. Fire blight control: the struggle goes on. A comparison of different fire blight control methods in Switzerland with respect to biosafety, efficacy and durability. Int. J. Environ. Res. Public Health 12: 11422-11447. https://doi.org/10.3390/ijerph120911422
  20. Ham, H., Lee, Y.-K., Kong, H. G., Hong, S. J., Lee, K. J., Oh, G.-R. et al. 2020. Outbreak of fire blight of apple and Asian pear in 2015- 2019 in Korea. Res. Plant Dis. 26: 222-228. (In Korean) https://doi.org/10.5423/RPD.2020.26.4.222
  21. Ham, H., Oh, G.-R., Park, D. S. and Lee, Y. H. 2022. Survey of oxolinic acid-resistant Erwinia amylovora in Korean apple and pear orchards, and the fitness impact of constructed mutants. Plant Pathol. J. 38: 482-489.
  22. Hindal, D. F. and Wong, S. M. 1988. Potential biocontrol of multiflora rose, Rosa multiflora. Weed Technol. 2: 122-131. https://doi.org/10.1017/S0890037X00030256
  23. Hormaza, J. I., Yamane, H. and Rodrigo, J. 2007. Apricot. In: Fruits and Nuts, ed. by C. Koel, pp. 171-187. Springer, Berlin, Germany.
  24. Horst, R. K. 2001. Host plants and their diseases. In: Westcott's Plant Disease Handbook, ed. by R. K. Horst, pp. 531-908. Springer, New York, NY, USA.
  25. Kamber, T., Buchmann, J. P., Pothier, J. F., Smits, T. H. M., Wicker, T. and Duffy, B. 2016. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection. Sci. Rep. 6: 21600.
  26. Katayama, H., Amo, H., Wuyun, T., Uematsu, C. and Iketani, H. 2016. Genetic structure and diversity of the wild Ussurian pear in East Asia. Breed. Sci. 66: 90-99. https://doi.org/10.1270/jsbbs.66.90
  27. Kaufmane, E. and Rumpunen, K. 2002. Pollination, pollen tube growth and fertilization in Chaenomeles japonica (Japanese quince). Sci. Hortic. 94: 257-271. https://doi.org/10.1016/S0304-4238(01)00371-5
  28. Khan, A. and Chao, T. 2017. Wild apple species as a source of fire blight resistance for sustainable productivity of apple orchards. Fruit Q. 25: 13-18.
  29. Kim, Y. S., Ngo, M. T., Kim, B., Han, J. W., Song, J., Park, M. S. et al. 2022. Biological control potential of Penicillium brasilianum against fire blight disease. Plant Pathol. J. 38: 461-471. https://doi.org/10.5423/PPJ.OA.06.2022.0076
  30. Koller, G. L. 1978. New trees for urban landscapes. Arnoldia 38: 157-172.
  31. Kostick, S. A., Teh, S. L. and Evans, K. M. 2021. Contributions of reduced susceptibility alleles in breeding apple cultivars with durable resistance to fire blight. Plants 10: 409.
  32. Lambe, R. C. 1980. Ornamental and flower diseases: fire blight of ornamentals. URL https://vtechworks.lib.vt.edu/bitstream/handle/10919/93608/VCE_control_series_88.pdf?sequence=1&isAllowed=y [4 December 2020].
  33. Leather, S. R. 1996. Prunus padus L. J. Ecol. 84: 125-132. https://doi.org/10.2307/2261707
  34. Lee, H. J., Lee, S. W., Suh, S.-J. and Hyun, I.-H. 2022. Recent spread and potential pathways for fire blight in South Korea. EPPO Bull. 52: 135-140. https://doi.org/10.1111/epp.12835
  35. Lee, M.-H., Ji, S. H., Ham, H., Kong, H. G., Park, D. S. and Lee, Y. H. 2021. First report of fire blight of Apricot (Prunus armeniaca) caused by Erwinia amylovora in Korea. Plant Dis. 105: 696.
  36. Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Res. Plant Dis. 24: 41-51. (In Korean) https://doi.org/10.5423/RPD.2018.24.1.41
  37. Malnoy, M., Martens, S., Norelli, J. L., Barny, M.-A., Sundin, G. W., Smits, T. H. M. et al. 2012. Fire blight: applied genomic insights of the pathogen and host. Annu. Rev. Phytopathol. 50: 457-494. https://doi.org/10.1146/annurev-phyto-081211-172931
  38. Myung, I.-S., Lee, J.-Y., Yun, M.-J., Lee, Y.-H., Lee, Y.-K., Park, D.-H. et al. 2016a. Fire blight of apple, caused by Erwinia amylovora, a new disease in Korea. Plant Dis. 100: 1774.
  39. Myung, I.-S., Yun, M.-J., Lee, Y.-H., Kim, G.-D. and Lee, Y.-K. 2016b. First report of fire blight caused by Erwinia amylovora on Chinese quince in South Korea. Plant Dis. 100: 2521.
  40. National Institute of Biological Resources. 2022. URL https://species.nibr.go.kr/ [24 February 2023].
  41. Olien, W. C. 1987. Apomictic crabapples and their potential for research and fruit production. HortScience 22: 541-546. https://doi.org/10.21273/HORTSCI.22.4.541
  42. Palacio-Bielsa, A., Rosello, M., Llop, P. and Lopez, M. M. 2012. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees 26: 13-29. https://doi.org/10.1007/s00468-011-0644-9
  43. Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99: 59-63.
  44. Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J. et al. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100: 1946.
  45. Park, J., Kim, B., Song, S., Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 38: 248-253. https://doi.org/10.5423/PPJ.NT.11.2021.0172
  46. Peil, A., Emeriewen, O. F., Khan, A., Kostick, S. and Malnoy, M. 2021. Status of fire blight resistance breeding in Malus. J. Plant Pathol. 103: 3-12. https://doi.org/10.1007/s42161-020-00581-8
  47. Phillips, D. H. and Burdekin, D. A. 1992. Diseases of wild and ornamental rosaceous trees. In: Diseases of Forest and Ornamental Trees, eds. by D. H. Phillips and D. A. Burdekin, pp. 376-395. Palgrave Macmillan, London, UK.
  48. Powney, R., Beer, S. V., Plummer, K., Luck, J. and Rodoni, B. 2011. The specificity of PCR-based protocols for detection of Erwinia amylovora. Australas. Plant Pathol. 40: 87-97. https://doi.org/10.1007/s13313-010-0017-7
  49. Rumpunen, K. 2002. Chaenomeles: potential new fruit crop for northern Europe. In: Trends in New Crops and New Uses, eds. by J. Janick and A. Whipkey, pp. 385-392. ASHA Press, Alexandria, VA, USA.
  50. Schmidt, H. 1988. Criteria and procedures for evaluating apomictic rootstocks for apple. HortScience 23: 104-107. https://doi.org/10.21273/HORTSCI.23.1.104
  51. Slabaugh, P. E. and Shaw, N. L. 2008. Cotoneaster Medik.: Cotoneaster. In: The Woody Plant Seed Manual: Agriculture Handbook 727, eds. by F. T. Bonner and R. P. Karrfalt, pp. 442-446. U.S. Department of Agriculture, Forest Service, Washington, DC, USA.
  52. Van der Zwet, T. 1995. First report of Erwinia amylovora on new host species in the genus Sorbus. Plant Dis. 79: 424.
  53. Van der Zwet, T. and Beer, S. V. 1999. Fire Blight-Its Nature, Prevention, and Control: A Practical Guide to Integrated Disease Management. Agriculture Information. Bulletin No. 631. U.S. Department of Agriculture, Washington, DC, USA. 97 pp.
  54. Van der Zwet, T., Oitto, W. A. and Westwood, M. N. 1974. Variability in degree of fire blight resistance within and between Pyrus species, interspecific hybrids, and seedling progenies. Euphytica 23: 295-304. https://doi.org/10.1007/BF00035871
  55. Van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire Blight: History, Biology, and Management. APS Press, St. Paul, MN, USA. 421 pp.
  56. Vegh, A. and Palkovics, L. 2013. First occurence of fire blight on apricot (Prunus armeniaca) in Hungary. Not. Bot. Horti Agrobot. 41: 440-443. https://doi.org/10.15835/nbha4129183
  57. Vrancken, K., Holtappels, M., Schoofs, H., Deckers, T. and Valcke, R. 2013. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiology 159: 823-832. https://doi.org/10.1099/mic.0.064881-0
  58. Waterworth, H. and Clayton, C. N. 1982. Fire blight in 'Bradford' pear. HortScience 17: 789.
  59. Weisshaupt, S., Kohl, L., Kunz, S., Hinze, M., Ernst, M., Schmid, A. et al. 2016. Alternative inoculum sources for fire blight: the potential role of fruit mummies and non-host plants. Plant Pathol. 65: 470-483. https://doi.org/10.1111/ppa.12431
  60. Zeller, W. 1979. Resistance and resistance breeding in ornamentals. EPPO Bull. 9: 35-44. https://doi.org/10.1111/j.1365-2338.1979.tb02224.x