DOI QR코드

DOI QR Code

Characterization of an Aminopeptidase A from Tetragenococcus halophilus CY54 Isolated from Myeolchi-Jeotgal

  • Tae Jin Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Min Jae Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Yun Ji Kang (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Ji Yeon Yoo (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University) ;
  • Jeong Hwan Kim (Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University)
  • Received : 2022.10.03
  • Accepted : 2022.12.18
  • Published : 2023.03.28

Abstract

In this study, a pepA gene encoding glutamyl (aspartyl)-specific aminopeptidase (PepA; E.C. 3.4.11.7) was cloned from Tetragenococcus halophilus CY54. The translated PepA from T. halophilus CY54 showed very low similarities with PepAs from Lactobacillus and Lactococcus genera. The pepA from T. halophilus CY54 was overexpressed in E. coli BL21(DE3) using pET26b(+). The recombinant PepA was purified by using an Ni- NTA column. The size of the recombinant PepA was 39.13 kDa as determined by SDS-PAGE, while its optimum pH and temperature were pH 5.0 and 60℃, respectively. In addition, the PepA was completely inactivated by 1 mM EDTA, indicating its metallopeptidase nature. The Km and Vmax of the PepA were 0.98 ± 0.006 mM and 0.1 ± 0.002 mM/min, respectively, when Glu-pNA was used as the substrate. This is the first report on PepA from Tetragenococcus species.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C100826711). Kim TJ, Kim MJ, Kang YJ, and Yoo JY were supported by the BK21 Four Program of the MOE, Republic of Korea.

References

  1. Kim JA, Yao Z, Perumal V, Kim HJ, Kim JH. 2018. Properties of Tetragenococcus halophilus strains isolated from myeolchi (anchovy)-jeotgal. Microbiol. Biotechnol. Lett. 46: 313-319. https://doi.org/10.4014/mbl.1804.04016
  2. Fukui Y, Yoshida M, Shozen KI, Funatsu Y, Takano T, Oikawa H, et al. 2012. Bacterial communities in fish sauce mash using culture-dependent and -independent methods. J. Gen. Appl. Microbiol. 58: 273-281. https://doi.org/10.2323/jgam.58.273
  3. Tanaka Y, Watanabe J, Mogi Y. 2012. Monotoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiol. 31: 100-106. https://doi.org/10.1016/j.fm.2012.02.005
  4. Jeong DW, Heo S, Lee JH. 2017. Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-saltfermented soybean paste. Food Microbiol. 62: 92-98. https://doi.org/10.1016/j.fm.2016.10.012
  5. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agric. Food Chem. 59: 8401-8408. https://doi.org/10.1021/jf201953v
  6. Harada R, Yuzuki M, Ito K, Shiga K, Bamba T, Fukusaki E. 2018. Microbe participation in aroma production during soy sauce fermentation. J. Biosci. Bioeng. 125: 688-694. https://doi.org/10.1016/j.jbiosc.2017.12.004
  7. Kieliszek M, Pobiega K, Piwowarek K, Kot AM. 2021. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules 26: 1858.
  8. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN. 1996. The proteotytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70: 187-221. https://doi.org/10.1007/BF00395933
  9. Exterkate FA, de Veer GJ. 1987. Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Appl. Environ. Microbiol. 53: 577-583. https://doi.org/10.1128/aem.53.3.577-583.1987
  10. Rombouts I, Lamberts L, Celus I, Lagrain B, Brijs K, Delcour JA. 2009. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J. Chromatogr. A 1216: 5557-5562. https://doi.org/10.1016/j.chroma.2009.05.066
  11. Sales M, de Freitas O, Zucoloto S, Okano N, Padovan G, Dos Santos J, et al. 1995. Casein, hydrolyzed casein, and amino acids that simulate casein produce the same extent of mucosal adaptation to massive bowel resection in adult rats. Am. J. Clin. Nutr. 62: 87-92. https://doi.org/10.1093/ajcn/62.1.87
  12. Aaslyng MD, Martens M, Poll L, Nielsen PM, Flyge H, Larsen LM. 1998. Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. J. Agric. Food Chem. 46: 481-489. https://doi.org/10.1021/jf970556e
  13. Jeong DW, Heo S, Kim TJ, Kim JH. 2021. Complete genome sequence of Tetragenococcus halophilus CY54 showing protease and aminopeptidase activity. Kor. J. Microbiol. 57: 223-225.
  14. Zor T, Selinger Z. 1996. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236: 302-308. https://doi.org/10.1006/abio.1996.0171
  15. Magboul AA, McSweeney PL. 1999. Purification and characterization of an aminopeptidase from Lactobacillus curvatus DPC2024. Int. Dairy J. 9: 107-116. https://doi.org/10.1016/S0958-6946(99)00029-1
  16. Le HG, Kim MJ, Jeon HS, Yoo JY, Kang YJ, Kim JH. 2022. Characterization of two cryptic plasmids from Levilactobacillus zymae GU240. Microbiol. Biotechnol. Lett. 50: 63-70. https://doi.org/10.48022/mbl.2201.01004
  17. Stressler T, Ewert J, Merz M, Funk J, Claassen W, Lutz-Wahl S, et al. 2016. A novel glutamyl (aspartyl)-specific aminopeptidase A from Lactobacillus delbrueckii with promising properties for application. PLoS One 11: e0152139.
  18. Nishimura I, Shiwa Y, Sato A, Oguma T, Yoshikawa H, Koyama Y. 2017. Comparative genomics of Tetragenococcus halophilus. J. Gen. Appl. Microbiol. 63: 369-372. https://doi.org/10.2323/jgam.2017.02.003
  19. Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. 2019. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol. 83: 36-47. https://doi.org/10.1016/j.fm.2019.04.009
  20. Unno R, Matsutani M, Suzuki T, Kodama K, Matsushita H, Yamasato K, et al. 2020. Lactic acid bacterial diversity in Brie cheese focusing on salt concentration and pH of isolation medium and characterisation of halophilic and alkaliphilic lactic acid bacterial isolates. Int. Dairy J. 109: 104757.
  21. Kuda T, Izawa Y, Yoshida S, Koyanagi T, Takahashi H, Kimura B. 2014. Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 35: 419-425. https://doi.org/10.1016/j.foodcont.2013.07.039
  22. Chuea-Nongthon C, Rodtong S, Yongsawatdigul J, Steele JL. 2017. Draft genome sequences of Tetragenococcus muriaticus strains 3MR10-3 and PMC-11-5 isolated from Thai fish sauce during natural fermentation. Genome Announc. 5: e00198-00117.
  23. I'Anson K, Movahedi S, Griffin H, Gasson M, Mulholland F. 1995. A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiology 141: 2873-2881. https://doi.org/10.1099/13500872-141-11-2873
  24. Niven GW. 1991. Purification and characterization of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO 712. Microbiology 137: 1207-1212. https://doi.org/10.1099/00221287-137-5-1207