Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C100826711). Kim TJ, Kim MJ, Kang YJ, and Yoo JY were supported by the BK21 Four Program of the MOE, Republic of Korea.
References
- Kim JA, Yao Z, Perumal V, Kim HJ, Kim JH. 2018. Properties of Tetragenococcus halophilus strains isolated from myeolchi (anchovy)-jeotgal. Microbiol. Biotechnol. Lett. 46: 313-319. https://doi.org/10.4014/mbl.1804.04016
- Fukui Y, Yoshida M, Shozen KI, Funatsu Y, Takano T, Oikawa H, et al. 2012. Bacterial communities in fish sauce mash using culture-dependent and -independent methods. J. Gen. Appl. Microbiol. 58: 273-281. https://doi.org/10.2323/jgam.58.273
- Tanaka Y, Watanabe J, Mogi Y. 2012. Monotoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiol. 31: 100-106. https://doi.org/10.1016/j.fm.2012.02.005
- Jeong DW, Heo S, Lee JH. 2017. Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-saltfermented soybean paste. Food Microbiol. 62: 92-98. https://doi.org/10.1016/j.fm.2016.10.012
- Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agric. Food Chem. 59: 8401-8408. https://doi.org/10.1021/jf201953v
- Harada R, Yuzuki M, Ito K, Shiga K, Bamba T, Fukusaki E. 2018. Microbe participation in aroma production during soy sauce fermentation. J. Biosci. Bioeng. 125: 688-694. https://doi.org/10.1016/j.jbiosc.2017.12.004
- Kieliszek M, Pobiega K, Piwowarek K, Kot AM. 2021. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules 26: 1858.
- Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN. 1996. The proteotytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70: 187-221. https://doi.org/10.1007/BF00395933
- Exterkate FA, de Veer GJ. 1987. Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Appl. Environ. Microbiol. 53: 577-583. https://doi.org/10.1128/aem.53.3.577-583.1987
- Rombouts I, Lamberts L, Celus I, Lagrain B, Brijs K, Delcour JA. 2009. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J. Chromatogr. A 1216: 5557-5562. https://doi.org/10.1016/j.chroma.2009.05.066
- Sales M, de Freitas O, Zucoloto S, Okano N, Padovan G, Dos Santos J, et al. 1995. Casein, hydrolyzed casein, and amino acids that simulate casein produce the same extent of mucosal adaptation to massive bowel resection in adult rats. Am. J. Clin. Nutr. 62: 87-92. https://doi.org/10.1093/ajcn/62.1.87
- Aaslyng MD, Martens M, Poll L, Nielsen PM, Flyge H, Larsen LM. 1998. Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. J. Agric. Food Chem. 46: 481-489. https://doi.org/10.1021/jf970556e
- Jeong DW, Heo S, Kim TJ, Kim JH. 2021. Complete genome sequence of Tetragenococcus halophilus CY54 showing protease and aminopeptidase activity. Kor. J. Microbiol. 57: 223-225.
- Zor T, Selinger Z. 1996. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236: 302-308. https://doi.org/10.1006/abio.1996.0171
- Magboul AA, McSweeney PL. 1999. Purification and characterization of an aminopeptidase from Lactobacillus curvatus DPC2024. Int. Dairy J. 9: 107-116. https://doi.org/10.1016/S0958-6946(99)00029-1
- Le HG, Kim MJ, Jeon HS, Yoo JY, Kang YJ, Kim JH. 2022. Characterization of two cryptic plasmids from Levilactobacillus zymae GU240. Microbiol. Biotechnol. Lett. 50: 63-70. https://doi.org/10.48022/mbl.2201.01004
- Stressler T, Ewert J, Merz M, Funk J, Claassen W, Lutz-Wahl S, et al. 2016. A novel glutamyl (aspartyl)-specific aminopeptidase A from Lactobacillus delbrueckii with promising properties for application. PLoS One 11: e0152139.
- Nishimura I, Shiwa Y, Sato A, Oguma T, Yoshikawa H, Koyama Y. 2017. Comparative genomics of Tetragenococcus halophilus. J. Gen. Appl. Microbiol. 63: 369-372. https://doi.org/10.2323/jgam.2017.02.003
- Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. 2019. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol. 83: 36-47. https://doi.org/10.1016/j.fm.2019.04.009
- Unno R, Matsutani M, Suzuki T, Kodama K, Matsushita H, Yamasato K, et al. 2020. Lactic acid bacterial diversity in Brie cheese focusing on salt concentration and pH of isolation medium and characterisation of halophilic and alkaliphilic lactic acid bacterial isolates. Int. Dairy J. 109: 104757.
- Kuda T, Izawa Y, Yoshida S, Koyanagi T, Takahashi H, Kimura B. 2014. Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control 35: 419-425. https://doi.org/10.1016/j.foodcont.2013.07.039
- Chuea-Nongthon C, Rodtong S, Yongsawatdigul J, Steele JL. 2017. Draft genome sequences of Tetragenococcus muriaticus strains 3MR10-3 and PMC-11-5 isolated from Thai fish sauce during natural fermentation. Genome Announc. 5: e00198-00117.
- I'Anson K, Movahedi S, Griffin H, Gasson M, Mulholland F. 1995. A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiology 141: 2873-2881. https://doi.org/10.1099/13500872-141-11-2873
- Niven GW. 1991. Purification and characterization of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO 712. Microbiology 137: 1207-1212. https://doi.org/10.1099/00221287-137-5-1207