Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Innovational Food Technology Development Program (#119009-3), funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA).
References
- Prentice AM, Prentice A. 1995. Evolutionary and enviromental influences on human lactation. Proc. Nutr. Soc. 54: 391-400. https://doi.org/10.1079/PNS19950008
- Ladomenou F, Moschandreas J, Kafatos A, Tselentis Y, Galanakis E. 2010. Protective effect of exclusive breastfeeding against infections during infancy: a prospective study. Arch. Dis. Child. 95: 1004-1008. https://doi.org/10.1136/adc.2009.169912
- Italianer MF, Naninck EFG, Roelants JA, van der Horst GTJ, Reiss IKM, Goudoever JBV, et al. 2020. Circadian variation in human milk composition, a systematic review. Nutrients 12: 2328.
- Casado B, Affolter M, Kussmann M. 2009. OMICS-rooted studies of milk proteins, oligosaccharides and lipids. J. Proteomics 73: 196-208. https://doi.org/10.1016/j.jprot.2009.09.018
- Buescher ES. 2001. Anti-inflammatory characteristics of human milk: how, where, why. Adv. Exp. Med. Biol. 501: 207-222. https://doi.org/10.1007/978-1-4615-1371-1_27
- Kong C, Faas MM, de Vos P, Akkerman R. 2020. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 11: 9445-9467. https://doi.org/10.1039/D0FO01700K
- Bode L. 2012. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22: 1147-1162. https://doi.org/10.1093/glycob/cws074
- Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. 2014. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 34: 143-169. https://doi.org/10.1146/annurev-nutr-071813-105721
- Duska-McEwen G, Senft AP, Ruetschilling TL, Barrett EG, Buck RH. 2014. Human milk oligosaccharides enhance innate immunity to respiratory syncytial virus and influenza in vitro. Food Nutr. Sci. 14: 13.
- Reverri EJ, Devitt AA, Kajzer JA, Baggs GE, Borschel MW. 2018. Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2'-fucosyllactose. Nutrients 10: 1346.
- Goehring KC, Marriage BJ, Oliver JS, Wilder JA, Barrett EG, Buck RH. 2016. Similar to those who are breastfed, infants fed a formula containing 2'-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J. Nutr. 146: 2559-2566. https://doi.org/10.3945/jn.116.236919
- Arnold H, Bourseaux F, Brock N. 1958. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours of the rat. Nature 181: 931-931. https://doi.org/10.1038/181931a0
- Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. 2015. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ. Toxicol. Pharmacol. 39: 1262-1275. https://doi.org/10.1016/j.etap.2015.04.012
- Pass GJ, Carrie D, Boylan M, Lorimore S, Wright E, Houston B, et al. 2005. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse. Cancer Res. 65: 4211-4217. https://doi.org/10.1158/0008-5472.CAN-04-4103
- Al-Nasser IA. 1998. In vivo prevention of cyclophosphamide-induced Ca2+ dependent damage of rat heart and liver mitochondria by cyclosporin A. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 121: 209-214. https://doi.org/10.1016/S1095-6433(98)10135-6
- Kanneganti T-D, Lamkanfi M, Amer AO. 2012. Innate immune pathways in host defense. Mediators Inflammn. 2012: 708972.
- Lee H-N, Choi J-H, Park J-Y, Ahn J-H, Jang DE, Shim JG, et al. 2021. Combination of vegetable soup and glucan demonstrates synergistic effects on macrophage-mediated immune responses. Food Sci. Biotechnol. 30: 583-588. https://doi.org/10.1007/s10068-021-00888-x
- Germic N, Frangez Z, Yousefi S, Simon H-U. 2019. Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells. Cell Death Differ. 26: 703-714. https://doi.org/10.1038/s41418-019-0295-8
- Lim JS, Kim CR, Shin KS, Lee SJ, Yoon TJ, Park HJ. 2021. Synergistic effect of Korean red ginseng extract and GABA mixture on the IgE production in mice via Th1/Th2 cell balance. Food Sci. Biotechnol. 30: 1571-1580. https://doi.org/10.1007/s10068-021-00985-x
- Donovan SM, Comstock SS. 2016. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann. Nutr. Metab. 69: 41-51. https://doi.org/10.1159/000452818
- Vos AP, M'Rabet L, Stahl B, Boehm G, Garssen J. 2007. Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit. Rev. Immunol. 27: 97-140. https://doi.org/10.1615/CritRevImmunol.v27.i2.10
- Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, et al. 2019. A Comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice. Molecules 24: 1096.
- Xu X, Zhang X. 2015. Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol. Res. 171: 97-106. https://doi.org/10.1016/j.micres.2014.11.002
- Lori A, Perrotta M, Lembo G, Carnevale D. 2017. The Spleen: A Hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 18: 1216.
- Raj S, Gothandam KM. 2015. Immunomodulatory activity of methanolic extract of Amorphophallus commutatus var. wayanadensis under normal and cyclophosphamide induced immunosuppressive conditions in mice models. Food Chem. Toxicol. 81: 151-159. https://doi.org/10.1016/j.fct.2015.04.026
- Sarangi I, Ghosh D, Bhutia SK, Mallick SK, Maiti TK. 2006. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int. Immunopharmacol. 6: 1287-1297. https://doi.org/10.1016/j.intimp.2006.04.002
- Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L. 2002. What is a natural killer cell? Nat. Immunol. 3: 6-8. https://doi.org/10.1038/ni0102-6
- Lemire P, Galbas T, Thibodeau J, Segura M. 2017. Natural killer cell functions during the innate immune response to pathogenic Streptococci. Front. Microbiol. 8: 1196.
- Adib-Conquy M, Scott-Algara D, Cavaillon JM, Souza-Fonseca-Guimaraes F. 2014. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol. Cell Biol. 92: 256-262. https://doi.org/10.1038/icb.2013.99
- Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. 2012. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol. Med. 18: 270-285. https://doi.org/10.2119/molmed.2011.00201
- Stordeur P, Zhou L, Byl B, Brohet F, Burny W, de Groote D, et al. 2003. Immune monitoring in whole blood using real-time PCR. J. Immunol. Methods 276: 69-77. https://doi.org/10.1016/S0022-1759(03)00074-7
- Castano AP, Mroz P, Wu MX, Hamblin MR. 2008. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc. Natl. Acad. Sci. USA 105: 5495-5500. https://doi.org/10.1073/pnas.0709256105
- Hamodrakas SJ, Kanellopoulos PN, Pavlou K, Tucker PA. 1997. The crystal structure of the complex of concanavalin A with 4'-methylumbelliferyl-alpha-D-glucopyranoside. J. Struct. Biol. 118: 23-30. https://doi.org/10.1006/jsbi.1996.3837
- Lovatt M, Yang T-H, Stauss HJ, Fisher AG, Merkenschlager M. 2000. Different doses of agonistic ligand drive the maturation of functional CD4 and CD8 T cells from immature precursors. Eur. J. Immunol. 30: 371-381. https://doi.org/10.1002/1521-4141(200002)30:2<371::AID-IMMU371>3.0.CO;2-T
- Arango Duque G, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491.
- Kak G, Raza M, Tiwari BK. 2018. Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomol. Concepts. 9: 64-79. https://doi.org/10.1515/bmc-2018-0007
- Azagra-Boronat I, Massot-Cladera M, Knipping K, Van't Land B, Stahl B, Garssen J, et al. 2018. Supplementation with 2'-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling fats. Front. Cell Infect. Microbiol. 8: 372.
- Azagra-Boronat I, Massot-Cladera M, Mayneris-Perxachs J, Knipping K, Van't Land B, Tims S, et al. 2019. Immunomodulatory and prebiotic effects of 2'-fucosyllactose in suckling rats. Front. Immunol. 10: 1773.
- He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y, et al. 2016. The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65: 33-46. https://doi.org/10.1136/gutjnl-2014-307544
- Mosmann TR, Sad S. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17: 138-146. https://doi.org/10.1016/0167-5699(96)80606-2
- Rothermel AL, Gilbert KM, Weigle WO. 1991. Differential abilities of Th1 and Th2 to induce polyclonal B cell proliferation. Cell. Immunol. 135: 1-15. https://doi.org/10.1016/0008-8749(91)90249-B
- Donovan SM, Comstock SS. 2016. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann. Nutr. Metab. 69 Suppl 2: 42-51. https://doi.org/10.1159/000452818
- Yu ZT, Nanthakumar NN, Newburg DS. 2016. The human milk oligosaccharide 2'-fucosyllactose quenches campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J. Nutr. 146: 1980-1990. https://doi.org/10.3945/jn.116.230706
- Li A, Li Y, Zhang X, Zhang C, Li T, Zhang J, et al. 2021. The human milk oligosaccharide 2'-fucosyllactose attenuates β-lactoglobulin-induced food allergy through the miR-146a-mediated toll-like receptor 4/nuclear factor-κB signaling pathway. J. Dairy Sci. 104: 10473-10484. https://doi.org/10.3168/jds.2021-20257
- Monmai C, Nam JH, Lim JH, Rod-in W, Lee TH, Park WJ. 2021. Anti-inflammatory activities of the mixture of strawberry and rice powder as materials of fermented rice cake on RAW264.7 macrophage cells and mouse models. Food Sci. Biotechnol. 30: 1409-1416. https://doi.org/10.1007/s10068-021-00929-5