DOI QR코드

DOI QR Code

Analysis and Characterization of Glutathione Peroxidases in an Environmental Microbiome and Isolated Bacterial Microorganisms

  • Yun-Juan Bao (State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University) ;
  • Qi Zhou (State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University) ;
  • Xuejing Yu (State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University) ;
  • Xiaolan Yu (State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University) ;
  • Francis J. Castellino (W. M. Keck Center for Transgene Research, University of Notre Dame)
  • Received : 2022.09.05
  • Accepted : 2023.01.03
  • Published : 2023.03.28

Abstract

Glutathione peroxidases (Gpx) are a group of antioxidant enzymes that protect cells or tissues against damage from reactive oxygen species (ROS). The Gpx proteins identified in mammals exhibit high catalytic activity toward glutathione (GSH). In contrast, a variety of non-mammalian Gpx proteins from diverse organisms, including fungi, plants, insects, and rodent parasites, show specificity for thioredoxin (TRX) rather than GSH and are designated as TRX-dependent peroxiredoxins. However, the study of the properties of Gpx in the environmental microbiome or isolated bacteria is limited. In this study, we analyzed the Gpx sequences, identified the characteristics of sequences and structures, and found that the environmental microbiome Gpx proteins should be classified as TRX-dependent, Gpx-like peroxiredoxins. This classification is based on the following three items of evidence: i) the conservation of the peroxidatic Cys residue; ii) the existence and conservation of the resolving Cys residue that forms the disulfide bond with the peroxidatic cysteine; and iii) the absence of dimeric and tetrameric interface domains. The conservation/divergence pattern of all known bacterial Gpx-like proteins in public databases shows that they share common characteristics with that from the environmental microbiome and are also TRX-dependent. Moreover, phylogenetic analysis shows that the bacterial Gpx-like proteins exhibit a star-like radiating phylogenetic structure forming a highly diverse genetic pool of TRX-dependent, Gpx-like peroxidases.

Keywords

Acknowledgement

The work was supported by State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University.

References

  1. Poole LB, Nelson KJ. 2016. Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39: 53-59. https://doi.org/10.14348/molcells.2016.2330
  2. Savelli B, Li Q, Webber M, Jemmat AM, Robitaille A, Zamocky M, et al. 2019. RedoxiBase: a database for ROS homeostasis regulated proteins. Redox Biol. 26: 101247.
  3. Epp O, Ladenstein R, Wendel A.1983. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 133: 51-69. https://doi.org/10.1111/j.1432-1033.1983.tb07429.x
  4. Ren B, Huang W, Akesson B, Ladenstein R. 1997. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J. Mol. Biol. 268: 869-885. https://doi.org/10.1006/jmbi.1997.1005
  5. Imai H, Nakagawa Y. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34: 145-169. https://doi.org/10.1016/S0891-5849(02)01197-8
  6. Grignard E, Morin J, Vernet P, Drevet JR. 2005. GPX5 orthologs of the mouse epididymis-restricted and sperm-bound seleniumindependent glutathione peroxidase are not expressed with the same quantitative and spatial characteristics in large domestic animals. Theriogenology 64: 1016-1033. https://doi.org/10.1016/j.theriogenology.2005.01.008
  7. Deponte M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 1830: 3217-3266. https://doi.org/10.1016/j.bbagen.2012.09.018
  8. Zhang WJ, He YX, Yang Z, Yu J, Chen Y, Zhou AZ. 2008. Crystal structure of glutathione-dependent phospholipid peroxidase Hyr1 from the yeast Saccharomyces cerevisiae. Proteins 73: 1058-1062. https://doi.org/10.1002/prot.22220
  9. Adriani PP, de Paiva FCR, de Oliveira GS, Leite AC, Sanches AS, et al. 2021. Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. Int. J. Biol. Macromol. 167: 93-100. https://doi.org/10.1016/j.ijbiomac.2020.11.179
  10. Koh CS, Didierjean C, Navrot N, Panjikar S, Mulliert G, Rouhier N, et al. 2007. Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: insights into redox-driven conformational changes. J. Mol. Biol. 370: 512-529. https://doi.org/10.1016/j.jmb.2007.04.031
  11. Wang X, Xu X. 2012. Molecular cloning and functional analyses of glutathione peroxidase homologous genes from Chlorella sp. NJ18. Gene 501: 17-23. https://doi.org/10.1016/j.gene.2012.04.003
  12. Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, et al. 2007. The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J. Mol. Biol. 365: 1033-1046. https://doi.org/10.1016/j.jmb.2006.10.033
  13. Dimastrogiovanni D, Anselmi M, Miele AE, Boumis G, Petersson L, Angelucci F, et al. 2010. Combining crystallography and molecular dynamics: the case of Schistosoma mansoni phospholipid glutathione peroxidase. Proteins 78: 259-270. https://doi.org/10.1002/prot.22536
  14. Haselton KJ, David R, Fell K, Schulte E, Dybas M, Olsen KW, et al. 2014. Molecular cloning, characterization and expression profile of a glutathione peroxidase-like thioredoxin peroxidase (TPxGl) of the rodent malaria parasite Plasmodium berghei. Parasitol. Int. 64: 282-289.
  15. Gamain B, Langsley G, Fourmaux MN, Touzel JP, Camus D, Slomianny DC. 1996. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 78: 237-248. https://doi.org/10.1016/S0166-6851(96)02632-1
  16. Kuang Y, Guo X, Guo A, Ran X, He Y, Zhang Y, et al. 2020. Single-molecule enzymatic reaction dynamics and mechanisms of GPX3 and TRXh9 from Arabidopsis thaliana. Spectrochim. Acta A Mol. Biomol. Spectrosc. 243: 118778.
  17. Toppo S, Vanin S, Bosello V, Tosatto SC. 2008. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid. Redox Signal. 10: 1501-1514. https://doi.org/10.1089/ars.2008.2057
  18. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. 2008. Glutathione peroxidase family - an evolutionary overview. FEBS J. 275: 3959-3970. https://doi.org/10.1111/j.1742-4658.2008.06542.x
  19. Dalla Tiezza M, Bickelhaupt FM, Flohe L, Maiorino M, Ursini F, Orian L. 2020. A dual attack on the peroxide bond. The common principle of peroxidatic cysteine or selenocysteine residues. Redox Biol. 34: 101540.
  20. Mishra S, Imlay J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525: 145-160. https://doi.org/10.1016/j.abb.2012.04.014
  21. Bao YJ, Xu Z, Li Y, Yao Z, Sun J, Song H. 2017. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. J. Environ. Sci. 56: 25-35. https://doi.org/10.1016/j.jes.2016.08.022
  22. Magrane M, Consortium U. 2011. UniProt Knowledgebase: a hub of integrated protein data. Database 2011: bar009.
  23. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
  24. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-324. https://doi.org/10.1093/nar/gku316
  25. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829. https://doi.org/10.1101/gr.074492.107
  26. Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38: e132.
  27. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. https://doi.org/10.1093/bioinformatics/btl158
  28. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44: W344-350. https://doi.org/10.1093/nar/gkw408
  29. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845-858. https://doi.org/10.1038/nprot.2015.053
  30. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589. https://doi.org/10.1038/s41586-021-03819-2
  31. Schrodinger L (2010) The PyMOL Molecular Graphics System, Version 1.3r1.
  32. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
  33. Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23: 254-267. https://doi.org/10.1093/molbev/msj030
  34. Brigelius-Flohe R, Flohe L. 2020. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 33: 498-516. https://doi.org/10.1089/ars.2019.7905
  35. Maiorino M, Aumann KD, Brigelius-Flohe R, Doria D, van den Heuvel J,McCarthy J, et al. 1995. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol. Chem. Hoppe Seyler 376: 651-660. https://doi.org/10.1515/bchm3.1995.376.11.651
  36. Wood ZA, Schroder E, Robin Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
  37. Karplus PA, Hall A. 2007. Structural survey of the peroxiredoxins. Subcell. Biochem. 44: 41-60. https://doi.org/10.1007/978-1-4020-6051-9_3
  38. Hall PAKaA. 2007. Structural survey of the peroxiredoxins; Harris LFaJR, editor: springer.
  39. Smirnova GV, Oktyabrsky ON. 2005. Glutathione in bacteria. Biochemistry 70: 1199-1211.  https://doi.org/10.1007/s10541-005-0248-3