Acknowledgement
The work was supported by State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University.
References
- Poole LB, Nelson KJ. 2016. Distribution and features of the six classes of peroxiredoxins. Mol. Cells 39: 53-59. https://doi.org/10.14348/molcells.2016.2330
- Savelli B, Li Q, Webber M, Jemmat AM, Robitaille A, Zamocky M, et al. 2019. RedoxiBase: a database for ROS homeostasis regulated proteins. Redox Biol. 26: 101247.
- Epp O, Ladenstein R, Wendel A.1983. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 133: 51-69. https://doi.org/10.1111/j.1432-1033.1983.tb07429.x
- Ren B, Huang W, Akesson B, Ladenstein R. 1997. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J. Mol. Biol. 268: 869-885. https://doi.org/10.1006/jmbi.1997.1005
- Imai H, Nakagawa Y. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34: 145-169. https://doi.org/10.1016/S0891-5849(02)01197-8
- Grignard E, Morin J, Vernet P, Drevet JR. 2005. GPX5 orthologs of the mouse epididymis-restricted and sperm-bound seleniumindependent glutathione peroxidase are not expressed with the same quantitative and spatial characteristics in large domestic animals. Theriogenology 64: 1016-1033. https://doi.org/10.1016/j.theriogenology.2005.01.008
- Deponte M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 1830: 3217-3266. https://doi.org/10.1016/j.bbagen.2012.09.018
- Zhang WJ, He YX, Yang Z, Yu J, Chen Y, Zhou AZ. 2008. Crystal structure of glutathione-dependent phospholipid peroxidase Hyr1 from the yeast Saccharomyces cerevisiae. Proteins 73: 1058-1062. https://doi.org/10.1002/prot.22220
- Adriani PP, de Paiva FCR, de Oliveira GS, Leite AC, Sanches AS, et al. 2021. Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. Int. J. Biol. Macromol. 167: 93-100. https://doi.org/10.1016/j.ijbiomac.2020.11.179
- Koh CS, Didierjean C, Navrot N, Panjikar S, Mulliert G, Rouhier N, et al. 2007. Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: insights into redox-driven conformational changes. J. Mol. Biol. 370: 512-529. https://doi.org/10.1016/j.jmb.2007.04.031
- Wang X, Xu X. 2012. Molecular cloning and functional analyses of glutathione peroxidase homologous genes from Chlorella sp. NJ18. Gene 501: 17-23. https://doi.org/10.1016/j.gene.2012.04.003
- Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, et al. 2007. The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J. Mol. Biol. 365: 1033-1046. https://doi.org/10.1016/j.jmb.2006.10.033
- Dimastrogiovanni D, Anselmi M, Miele AE, Boumis G, Petersson L, Angelucci F, et al. 2010. Combining crystallography and molecular dynamics: the case of Schistosoma mansoni phospholipid glutathione peroxidase. Proteins 78: 259-270. https://doi.org/10.1002/prot.22536
- Haselton KJ, David R, Fell K, Schulte E, Dybas M, Olsen KW, et al. 2014. Molecular cloning, characterization and expression profile of a glutathione peroxidase-like thioredoxin peroxidase (TPxGl) of the rodent malaria parasite Plasmodium berghei. Parasitol. Int. 64: 282-289.
- Gamain B, Langsley G, Fourmaux MN, Touzel JP, Camus D, Slomianny DC. 1996. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 78: 237-248. https://doi.org/10.1016/S0166-6851(96)02632-1
- Kuang Y, Guo X, Guo A, Ran X, He Y, Zhang Y, et al. 2020. Single-molecule enzymatic reaction dynamics and mechanisms of GPX3 and TRXh9 from Arabidopsis thaliana. Spectrochim. Acta A Mol. Biomol. Spectrosc. 243: 118778.
- Toppo S, Vanin S, Bosello V, Tosatto SC. 2008. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid. Redox Signal. 10: 1501-1514. https://doi.org/10.1089/ars.2008.2057
- Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. 2008. Glutathione peroxidase family - an evolutionary overview. FEBS J. 275: 3959-3970. https://doi.org/10.1111/j.1742-4658.2008.06542.x
- Dalla Tiezza M, Bickelhaupt FM, Flohe L, Maiorino M, Ursini F, Orian L. 2020. A dual attack on the peroxide bond. The common principle of peroxidatic cysteine or selenocysteine residues. Redox Biol. 34: 101540.
- Mishra S, Imlay J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525: 145-160. https://doi.org/10.1016/j.abb.2012.04.014
- Bao YJ, Xu Z, Li Y, Yao Z, Sun J, Song H. 2017. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. J. Environ. Sci. 56: 25-35. https://doi.org/10.1016/j.jes.2016.08.022
- Magrane M, Consortium U. 2011. UniProt Knowledgebase: a hub of integrated protein data. Database 2011: bar009.
- Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.
- Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-324. https://doi.org/10.1093/nar/gku316
- Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829. https://doi.org/10.1101/gr.074492.107
- Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38: e132.
- Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659. https://doi.org/10.1093/bioinformatics/btl158
- Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44: W344-350. https://doi.org/10.1093/nar/gkw408
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845-858. https://doi.org/10.1038/nprot.2015.053
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589. https://doi.org/10.1038/s41586-021-03819-2
- Schrodinger L (2010) The PyMOL Molecular Graphics System, Version 1.3r1.
- Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
- Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23: 254-267. https://doi.org/10.1093/molbev/msj030
- Brigelius-Flohe R, Flohe L. 2020. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 33: 498-516. https://doi.org/10.1089/ars.2019.7905
- Maiorino M, Aumann KD, Brigelius-Flohe R, Doria D, van den Heuvel J,McCarthy J, et al. 1995. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol. Chem. Hoppe Seyler 376: 651-660. https://doi.org/10.1515/bchm3.1995.376.11.651
- Wood ZA, Schroder E, Robin Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
- Karplus PA, Hall A. 2007. Structural survey of the peroxiredoxins. Subcell. Biochem. 44: 41-60. https://doi.org/10.1007/978-1-4020-6051-9_3
- Hall PAKaA. 2007. Structural survey of the peroxiredoxins; Harris LFaJR, editor: springer.
- Smirnova GV, Oktyabrsky ON. 2005. Glutathione in bacteria. Biochemistry 70: 1199-1211. https://doi.org/10.1007/s10541-005-0248-3