DOI QR코드

DOI QR Code

강원도 지역 스마트 수소에너지 플랜트 입지계획을 위한 다기준 공간의사결정 지원 시스템 연구

A Multi-Criteria Spatial Decision Support System for Smart Hydrogen Energy Plant Location Planning in the Gangwon-Do Region, South Korea

  • 투고 : 2023.02.26
  • 심사 : 2023.03.30
  • 발행 : 2023.06.01

초록

본 연구에서는 강원도 지역 스마트 수소 에너지 발전소의 위치 적합성 분석을 GIS 기반 다중기준 의사결정 분석(MCDA)을 활용하여 수행하였다. 적합지 분석을 위하여, 수소 활용 잠재력과 기후 조건, 환경 및 지형 조건, 자연 재해 발생 가능성 등의 사회지리학적 조건과 더불어 관련 공간데이터 레이어를 활용하여 수소 에너지 발전소의 잠재적 위치에 대한 적합성 평가를 수행하였다. 이후 공간 데이터 레이어를 기반으로 위치의 적합성에 따라 순위를 매기고 AHP 결과에 따라 우선순위를 선정하였다. 연구 결과, 강원도 지역 전체면적의 약 4.26%인 712.14 km2가 스마트 수소 에너지 발전소 건설에 적합한 지역으로 파악되었으며, 철원군, 춘천시, 원주시, 양구군, 강릉시, 횡성군 및 동해안 연안 지역의 일부 지역은 태양 및 풍력 에너지 이용에 적합한 지역으로 확인되었다. 본 연구 결과를 활용하여 의사 결정자 및 이해관계자들이 스마트 수소 에너지 발전소의 위치 선정에 관해 적합한 결정을 내릴 수 있는 가이드라인으로 활용될 수 있다고 판단된다.

This paper presents a GIS-based site suitability analysis for a smart hydrogen energy plant in the Gangwon-Do region, South Korea. A GIS-based multi-criteria decision analysis (MCDA) was implemented in this study to identify the most suitable sites for the development of smart hydrogen energy plants. The study utilizes various spatial data layers, including hydrogen generation potential and climatic conditions, environmental and topographic conditions, and natural catastrophic conditions, to evaluate the suitability of potential sites for the hydrogen energy plant. The spatial data layers were then used to rank and prioritize the sites based on suitability. The findings revealed that 4.26% of the study area, or 712.14 km2, was suitable for constructing smart hydrogen energy plants. Some regions of Cheorwon-gun, Chuncheon-si, Wonju-si, Yanggu-gun, Gangneung-si, Hoengseong-gun, and near the coastal region along the east coast were found to be suitable for solar and wind energy utilization. The proposed MCDA provides a valuable tool for decision-makers and stakeholders to make informed decisions on the location of smart hydrogen energy plants and supports the transition to a sustainable and low-carbon energy system. Decision-makers can use the results of this study to select suitable sites for constructing smart hydrogen energy plants.

키워드

과제정보

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2022RIS-005). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2021R1C1C2003316).

참고문헌

  1. Alhamwi, A., Medjroubi, W., Vogt, T. and Agert, C. (2017). "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas." Applied Energy, Vol. 191, pp. 1-9. https://doi.org/10.1016/j.apenergy.2017.01.048
  2. Ali, F., Bennui, A., Chowdhury, S. and Techato, K. (2022). "Suitable site selection for solar-based green hydrogen in southern thailand using GIS-MCDM approach." Sustainability, Vol. 14, No. 11, 6597.
  3. Alonso, J. A. and Lamata, M. T. (2006). "Consistency in the analytic hierarchy process: a new approach." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 14, No. 4, pp. 445-459. https://doi.org/10.1142/S0218488506004114
  4. Atwongyeire, J. R., Palamanit, A., Bennui, A., Shakeri, M., Techato, K. and Ali, S. (2022). "Assessment of suitable areas for smart grid of power generated from renewable energy resources in western Uganda." Energies, Vol. 15, No. 4, 1595.
  5. Balta, M. O. and Balta, M. T. (2022). "Development of a sustainable hydrogen city concept and initial hydrogen city projects." Energy Policy, Vol. 166, 113015.
  6. Bergenson, A. (2021). "South Korea has big plans to create hydrogen cities. https://www.Hydrogenfuelnews.com/south-korea-has-big-plans-to-create-hydrogen-cities/8538904/ (Accessed: August 29, 2022).
  7. Chrysochoidis-Antsos, N., Escude, M. R. and van Wijk, A. J. (2020). "Technical potential of on-site wind-powered hydrogen producing refuelling stations in the Netherlands." International Journal of Hydrogen Energy, Vol. 45, No. 46, pp. 25096-25108. https://doi.org/10.1016/j.ijhydene.2020.06.125
  8. Cradden, L., Kalogeri, C., Barrios, I. M., Galanis, G., Ingram, D. and Kallos, G. (2016). "Multi-criteria site selection for offshore renewable energy platforms." Renewable Energy, Vol. 87, No. 1, pp. 791-806. https://doi.org/10.1016/j.renene.2015.10.035
  9. Dagdougui, H., Ouammi, A. and Sacile, R. (2011). "A regional decision support system for onsite renewable hydrogen production from solar and wind energy sources." International Journal of Hydrogen Energy, Vol. 36, No. 22, pp. 14324-14334. https://doi.org/10.1016/j.ijhydene.2011.08.050
  10. Guleria, A. and Bajaj, R. K. (2020). "A robust decision making approach for hydrogen power plant site selection utilizing (R, S)-Norm Pythagorean Fuzzy information measures based on VIKOR and TOPSIS method." International Journal of Hydrogen Energy, Vol. 45, No. 38, pp. 18802-18816. https://doi.org/10.1016/j.ijhydene.2020.05.091
  11. Gye, H. R., Seo, S. K., Bach, Q. V., Ha, D. and Lee, C. J. (2019). "Quantitative risk assessment of an urban hydrogen refueling station." International Journal of Hydrogen Energy, Vol. 44, No. 2, pp. 1288-1298. https://doi.org/10.1016/j.ijhydene.2018.11.035
  12. Huang, Y. and Zhao, L. (2018). "Review on landslide susceptibility mapping using support vector machines." Catena, Vol. 165, pp. 520-529. https://doi.org/10.1016/j.catena.2018.03.003
  13. Jung, J., Han, S. and Kim, B. (2019). "Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes." Applied Energy, Vol. 242, pp. 57-68. https://doi.org/10.1016/j.apenergy.2019.03.101
  14. Kabir, G. and Sumi, R. S. (2014). "Power substation location selection using fuzzy analytic hierarchy process and PROMETHEE: A case study from Bangladesh." Energy, Vol. 72, pp. 717-730. https://doi.org/10.1016/j.energy.2014.05.098
  15. Karipoglu, F., Genc, M. S. and Akarsu, B. (2022). "GIS-based optimal site selection for the solar-powered hydrogen fuel charge stations." Fuel, Vol. 324, 124626.
  16. Kim, H., Eom, M. and Kim, B. I. (2020). "Development of strategic hydrogen refueling station deployment plan for Korea." International Journal of Hydrogen Energy, Vol. 45, No. 38, pp. 19900-19911. https://doi.org/10.1016/j.ijhydene.2020.04.246
  17. Kim, K. R. and Cho, J. H. (2023). "Prioritization and optimal location of hydrogen fueling stations in Seoul: Using multi-standard decision-making and ILP optimization." Processes, Vol. 11, No. 3, 831.
  18. Korea Herald, S. (2019). Korea to build 3 hydrogen-powered cities by 2022. http://www.koreaherald.com/view.php?ud=20191010000806. (Accessed: August 29, 2022).
  19. KPX (2016). Korea Power Exchange Transmission Map, 2016, Available at https://new.kpx.or.kr/board.es?mid=a20505000000&bid=0057&act=view&list_no=56883 (Accessed: February 15, 2023).
  20. Lee, J. J., Song, M. S., Yun, H. S. and Yum, S. G. (2022). "Dynamic landslide susceptibility analysis that combines rainfall period, accumulated rainfall, and geospatial information." Scientific Reports, Vol. 12, No. 1, pp. 1-20. https://doi.org/10.1038/s41598-022-21795-z
  21. Lin, R., Ye, Z., Guo, Z. and Wu, B. (2020). "Hydrogen station location optimization based on multiple data sources." International Journal of Hydrogen Energy, Vol. 45, No. 17, pp. 10270-10279. https://doi.org/10.1016/j.ijhydene.2019.10.069
  22. Martinez-Gordon, R., Morales-Espana, G., Sijm, J. and Faaij, A. P. C. (2021). "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region." Renewable and Sustainable Energy Reviews, Vol. 141, 110857.
  23. Messaoudi, D., Settou, N., Negrou, B. and Settou, B. (2019). "GIS based multi-criteria decision making for solar hydrogen production sites selection in Algeria." International Journal of Hydrogen Energy, Vol. 44, No. 60, pp. 31808-31831. https://doi.org/10.1016/j.ijhydene.2019.10.099
  24. Mezaei, M., Alharbi, S. A., Razmjoo, A. and Mohamed, M. A. (2021). "Accurate location planning for a wind-powered hydrogen refueling station: Fuzzy VIKOR method." International Journal of Hydrogen Energy, Vol. 46, No. 67, pp. 33360-33374. https://doi.org/10.1016/j.ijhydene.2021.07.154
  25. Mostafaeipour, A., Rezayat, H. and Rezaei, M. (2020). "A thorough investigation of solar-powered hydrogen potential and accurate location planning for big cities: A case study." International Journal of Hydrogen Energy, Vol. 45, No. 56, pp. 31599-31611. https://doi.org/10.1016/j.ijhydene.2020.08.211
  26. Mrowczynska, M., Skiba, M., Lesniak, A., Bazan-Krzywoszanska, A., Janowiec, F., Sztubecka, M., ... and Kazak, J. K. (2022). "A new fuzzy model of multi-criteria decision support based on Bayesian networks for the urban areas' decarbonization planning." Energy Conversion and Management, Vol. 268, 116035.
  27. Noorollahi, Y., Senani, A. G., Fadaei, A., Simaee, M. and Moltames, R. (2022). "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach." Renewable Energy, Vol. 186, pp. 89-104. https://doi.org/10.1016/j.renene.2021.12.124
  28. Pamucar, D., Gigovic, L., Bajic, Z. and Janosevic, M. (2017). "Location selection for wind farms using GIS multi-criteria hybrid model: An approach based on fuzzy and rough numbers." Sustainability, Vol. 9, No. 8, 1315.
  29. Rezaei, M., Khalilpour, K. R. and Jahangiri, M. (2020). "Multi-criteria location identification for wind/solar based hydrogen generation: The case of capital cities of a developing country." International Journal of Hydrogen Energy, Vol. 45, No. 58, pp. 33151-33168. https://doi.org/10.1016/j.ijhydene.2020.09.138
  30. Rezaei-Shouroki, M., Mostafaeipour, A. and Qolipour, M. (2017). "Prioritizing of wind farm locations for hydrogen production: A case study." International Journal of Hydrogen Energy, Vol. 42, No. 15, pp. 9500-9510. https://doi.org/10.1016/j.ijhydene.2017.02.072
  31. Saaty, T. L. (1990). "How to make a decision: the analytic hierarchy process." European Journal of Operational Research, Vol. 48, No. 1, pp. 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
  32. Scott, J. A., Ho, W. and Dey, P. K. (2012). "A review of multi-criteria decision-making methods for bioenergy systems." Energy, Vol. 42, No. 1, pp. 146-156. https://doi.org/10.1016/j.energy.2012.03.074
  33. Shorabeh, S. N., Firozjaei, H. K., Firozjaei, M. K., Jelokhani-Niaraki, M., Homaee, M. and Nematollahi, O. (2022). "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives." Renewable and Sustainable Energy Reviews, Vol. 168, 112778.
  34. Tavana, M., Arteaga, F. J. S., Mohammadi, S. and Alimohammadi, M. (2017). "A fuzzy multi-criteria spatial decision support system for solar farm location planning." Energy Strategy Reviews, Vol. 18, pp. 93-105. https://doi.org/10.1016/j.esr.2017.09.003
  35. Vafaeipour, M., Zolfani, S. H., Varzandeh, M. H. M., Derakhti, A. and Eshkalag, M. K. (2014). "Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach." Energy Conversion and Management, Vol. 86, pp. 653-663. https://doi.org/10.1016/j.enconman.2014.05.083
  36. Wang, C. N., Dang, T. T. and Bayer, J. (2021). "A two-stage multiple criteria decision making for site selection of solar photovoltaic (PV) power plant: A case study in Taiwan." IEEE Access, Vol. 9, pp. 75509-75525. https://doi.org/10.1109/ACCESS.2021.3081995
  37. Wang, Y., Tao, S., Chen, X., Huang, F., Xu, X., Liu, X., ... and Liu, L. (2022). "Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system." Renewable Energy, Vol. 194, pp. 273-292. https://doi.org/10.1016/j.renene.2022.05.087
  38. Yousefi, H., Hafeznia, H. and Yousefi-Sahzabi, A. (2018). "Spatial site selection for solar power plants using a gis-based boolean-fuzzy logic model: A case study of Markazi province Iran." Energies, Vol. 11, No. 7, 1648.
  39. Yushchenko, A., De Bono, A., Chatenoux, B., Patel, M. K. and Ray, N. (2018). "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa." Renewable and Sustainable Energy Reviews, Vol. 81, No. 2, pp. 2088-2103. https://doi.org/10.1016/j.rser.2017.06.021
  40. Zhao, B., Wang, H., Huang, Z. and Sun, Q. (2022). "Location mapping for constructing biomass power plant using multi-criteria decision-making method." Sustainable Energy Technologies and Assessments, Vol. 49, 101707.
  41. Zhou, J., Tao, Y., Wang, Y., Sun, J. and Wu, Y. (2022). "A three-stage geospatial multi-criteria optimization model for location identification of integrated energy service stations from macro market to micro site." Energy Conversion and Management, Vol. 265, 115773.