DOI QR코드

DOI QR Code

Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes

  • Ji-Young Jeong (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Lian Cai (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Mirae Kim (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Hyerin Choi (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Dongjin, Oh (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Ali Jawad (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Sohee Kim (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Haomiao Zheng (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Eunsong Lee (College of Veterinary Medicine, Kangwon National University) ;
  • Joohyeong Lee (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University) ;
  • Sang-Hwan, Hyun (Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University)
  • Received : 2022.08.09
  • Accepted : 2023.01.05
  • Published : 2023.03.31

Abstract

Background: Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. Objectives: This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). Methods: Each EGT concentration (0, 10, 50, and 100 μM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. Results: After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 μM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 μM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 μM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. Conclusions: Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.

Keywords

Acknowledgement

The authors appreciate Mrs. Suin Lee and Mrs. Eunjeong Kim for their support with several techniques and ovary sampling.

References

  1. Ito J, Shirasuna K, Kuwayama T, Iwata H. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology. 2020;93:37-43.  https://doi.org/10.1016/j.cryobiol.2020.02.014
  2. De Vos M, Grynberg M, Ho TM, Yuan Y, Albertini DF, Gilchrist RB. Perspectives on the development and future of oocyte IVM in clinical practice. J Assist Reprod Genet. 2021;38(6):1265-1280.  https://doi.org/10.1007/s10815-021-02263-5
  3. Tatemoto H, Ootaki K, Shigeta K, Muto N. Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation. Biol Reprod. 2001;65(6):1800-1806.  https://doi.org/10.1095/biolreprod65.6.1800
  4. Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126-136.  https://doi.org/10.1016/j.theriogenology.2005.09.020
  5. Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8(4):485-489.  https://doi.org/10.1071/RD9960485
  6. Mao L, Lou H, Lou Y, Wang N, Jin F. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online. 2014;28(3):284-299. https://doi.org/10.1016/j.rbmo.2013.10.016
  7. Barnes FL, Kausche A, Tiglias J, Wood C, Wilton L, Trounson A. Production of embryos from in vitromatured primary human oocytes. Fertil Steril. 1996;65(6):1151-1156.  https://doi.org/10.1016/S0015-0282(16)58330-7
  8. Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013;2013:183024. 
  9. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70(5):257-265.  https://doi.org/10.1111/j.1753-4887.2012.00476.x
  10. Kala M, Shaikh MV, Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reprod Med Biol. 2016;16(1):28-35.  https://doi.org/10.1002/rmb2.12013
  11. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118-126.  https://doi.org/10.4103/0973-7847.70902
  12. Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Koo OJ, et al. Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. J Vet Sci. 2013;14(1):15-20.  https://doi.org/10.4142/jvs.2013.14.1.15
  13. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta. 2012;1822(5):784-793.  https://doi.org/10.1016/j.bbadis.2011.09.017
  14. Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, et al. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev. 2020;33(2):190-217.  https://doi.org/10.1017/S0954422419000301
  15. Halliwell B, Cheah IK, Tang RM. Ergothioneine - a diet-derived antioxidant with therapeutic potential. FEBS Lett. 2018;592(20):3357-3366.  https://doi.org/10.1002/1873-3468.13123
  16. Sotgia S, Zinellu A, Pisanu E, Vlahopoulou G, Ariu F, Ledda S, et al. Concentrations of l-ergothioneine in follicular fluids of farm animals. Comp Clin Pathol. 2015;24(5):1261-1265.  https://doi.org/10.1007/s00580-015-2098-8
  17. You J, Kim J, Lim J, Lee E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology. 2010;74(5):777-785.  https://doi.org/10.1016/j.theriogenology.2010.04.002
  18. Hwang SU, Jeon Y, Yoon JD, Cai L, Kim E, Yoo H, et al. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development. J Reprod Dev. 2015;61(6):549-557.  https://doi.org/10.1262/jrd.2015-049
  19. Gardner DK, Balaban B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and 'OMICS': is looking good still important? Mol Hum Reprod. 2016;22(10):704-718.  https://doi.org/10.1093/molehr/gaw057
  20. Nikbakht R, Mohammadjafari R, Rajabalipour M, Moghadam MT. Evaluation of oocyte quality in polycystic ovary syndrome patients undergoing ART cycles. Fertil Res Pract. 2021;7(1):2. 
  21. Da Broi MG, Navarro PA. Oxidative stress and oocyte quality: ethiopathogenic mechanisms of minimal/ mild endometriosis-related infertility. Cell Tissue Res. 2016;364(1):1-7.  https://doi.org/10.1007/s00441-015-2339-9
  22. Pawlak P, Warzych E, Cieslak A, Malyszka N, Maciejewska E, Madeja ZE, et al. The consequences of porcine IVM medium supplementation with follicular fluid become reflected in embryo quality, yield and gene expression patterns. Sci Rep. 2018;8(1):15306. 
  23. Lin T, Lee JE, Kang JW, Oqani RK, Cho ES, Kim SB, et al. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects. Mol Reprod Dev. 2018;85(8-9):665-681.  https://doi.org/10.1002/mrd.23052
  24. Hardy ML, Day ML, Morris MB. Redox regulation and oxidative stress in mammalian oocytes and embryos developed in vivo and in vitro. Int J Environ Res Public Health. 2021;18(21):11374. 
  25. Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503-512. https://doi.org/10.1016/j.fertnstert.2006.02.088
  26. Fu TT, Shen L. Ergothioneine as a natural antioxidant against oxidative stress-related diseases. Front Pharmacol. 2022;13:850813. 
  27. Atikuzzaman M, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, et al. The 9-cis retinoic acid signaling pathway and its regulation of prostaglandin-endoperoxide synthase 2 during in vitro maturation of pig cumulus cell-oocyte complexes and effects on parthenogenetic embryo production. Biol Reprod. 2011;84(6):1272-1281.  https://doi.org/10.1095/biolreprod.110.086595
  28. Fatehi AN, Roelen BA, Colenbrander B, Schoevers EJ, Gadella BM, Beverst MM, et al. Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote. 2005;13(2):177-185.  https://doi.org/10.1017/S0967199405003126
  29. Chen L, Russell PT, Larsen WJ. Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev. 1993;34(1):87-93.  https://doi.org/10.1002/mrd.1080340114
  30. Yung Y, Ophir L, Yerushalmi GM, Baum M, Hourvitz A, Maman E. HAS2-AS1 is a novel LH/hCG target gene regulating HAS2 expression and enhancing cumulus cells migration. J Ovarian Res. 2019;12(1):21. 
  31. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123(5):613-620.  https://doi.org/10.1530/rep.0.1230613
  32. Gershon E, Plaks V, Aharon I, Galiani D, Reizel Y, Sela-Abramovich S, et al. Oocyte-directed depletion of connexin43 using the Cre-LoxP system leads to subfertility in female mice. Dev Biol. 2008;313(1):1-12.  https://doi.org/10.1016/j.ydbio.2007.08.041
  33. Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):241-272.  https://doi.org/10.1007/s00204-011-0674-5
  34. Kwak MK, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol. 2002;22(9):2883-2892.  https://doi.org/10.1128/MCB.22.9.2883-2892.2002
  35. Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal. 2010;13(11):1665-1678.  https://doi.org/10.1089/ars.2010.3222
  36. Salama SA, Abd-Allah GM, Mohamadin AM, Elshafey MM, Gad HS. Ergothioneine mitigates cisplatin-evoked nephrotoxicity via targeting Nrf2, NF-κB, and apoptotic signaling and inhibiting γ-glutamyl transpeptidase. Life Sci. 2021;278:119572. 
  37. Jiang X, Xing X, Zhang Y, Zhang C, Wu Y, Chen Y, et al. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol Environ Saf. 2021;207:111231. 
  38. Abeydeera LR, Wang WH, Cantley TC, Prather RS, Day BN. Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology. 1998;50(5):747-756.  https://doi.org/10.1016/S0093-691X(98)00180-0
  39. Truong T, Gardner DK. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum Reprod. 2017;32(12):2404-2413.  https://doi.org/10.1093/humrep/dex330
  40. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62(7):1186-1197.  https://doi.org/10.1016/j.theriogenology.2004.01.011
  41. Mishra A, Reddy IJ, Dhali A, Javvaji PK. l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. Zygote. 2018;26(2):149-161. https://doi.org/10.1017/S0967199418000047